Skip to main content
Log in

Left–right asymmetry and morphological consequences of a host shift in the oligophagous Neotropical moth Macaria mirthae (Lepidoptera: Geometridae)

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

An Erratum to this article was published on 10 June 2015

Abstract

Phytophagous insects are excellent model organisms to study the genetic and ecological components of adaptation and morphological divergence, because their host plants are one of the main environmental factors influencing their early life stages. Although many lepidopterans are highly specialized in their host use, shifts to exotic plants have been reported for some species. Macaria mirthae is a native moth from Northern Chile that feeds preferentially on the Fabacea species Acacia macracantha, however due to habitat loss a host shift has recently been observed to the introduced fabacean Leucaena leucocephala. We studied the impact that different host plants have on the developmental instability levels in the moth’s wing morphology evaluating both fluctuating asymmetry (FA) and directional asymmetry (DA). FA measures the small random deviations existing between the left and right sides of bilaterally symmetrical traits and it widely used as a biomonitor of environmental quality. DA refers to the tendency for a trait to be consistently developed in a different manner on the right and left sides of the body. It has been recently shown that subtle DA patterns seem to be a ubiquitous phenomenon among bilaterian animals. Our results confirmed the presence of FA in M. mirthae forewings by applying geometric morphometric techniques. Furthermore, it was found that the individuals feeding on the endemic tree (A. macracantha) showed marked DA levels, while the specimens inhabiting the exotic plant (L. leucocephala) did not. The absence of DA in the individuals occupying the exotic plant is striking, because it has been established that this asymmetry pattern is widespread among insect wings. This phenomenon could be related to the influence of L. leucocephala on normal wing development. Despite the reduced quality of L. leucocephala as host plant, its wider presence in the Azapa valley (Chile) could explain the host shift made by M. mirthae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aronson J (1991) Description and distribution of Acacia macracantha Humb et Bonpl ex Willd. (Leguminosae, Mimosoideae) in northern Chile. Gayana Bot 48:81–88

    Google Scholar 

  • Auffray J-C, Alibert P, Renaud S, Orth A, Bonhomme F (1996) Fluctuating asymmetry in Mus musculus subspecific hybridization. Advances in morphometrics. Springer, New York, pp 275–283

    Chapter  Google Scholar 

  • Auffray J, Debat V, Alibert P (1999) Shape asymmetry and developmental stability On growth and form: spatio-temporal pattern formation in biology. Wiley, Chichester, pp 309–324

    Google Scholar 

  • Benítez HA, Parra LE (2011) Fluctuating asymmetry: a morpho-functional tool to measure development stability. Int J Morphol 29:1459–1469

    Article  Google Scholar 

  • Benítez H, Briones R, Jerez V (2008) Fluctuating asymmetry in two populations of Ceroglossus chilensis (Eschscholtz, 1829) (Coleoptera: Carabidae) in agroecosystem of Pinus radiata d. Don, Bio–Bio region, Chile. Gayana 72:131–139

    Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Boorman CJ, Shimeld SM (2002) The evolution of left–right asymmetry in chordates. BioEssays 24:1004–1011

    Article  CAS  PubMed  Google Scholar 

  • Carreira V, Soto I, Hasson E, Fanara J (2006) Patterns of variation in wing morphology in the cactophilic Drosophila buzzatii and its sibling D. koepferae. J Evol Biol 19:1275–1282

    Article  CAS  PubMed  Google Scholar 

  • Coyne JA (1987) Lack of response to selection for directional asymmetry in Drosophila melanogaster. J Hered 78:119

    CAS  PubMed  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation, vol 37. Sinauer Associates, Sunderland

    Google Scholar 

  • Dambroski HR, Linn C, Berlocher SH, Forbes AA, Roelofs W, Feder JL (2005) The genetic basis for fruit odor discrimination in Rhagoletis flies and its significance for sympatric host shifts. Evolution 59:1953–1964

    Article  CAS  PubMed  Google Scholar 

  • De Coster G, Van Dongen S, Malaki P, Muchane M, Alcántara-Exposito A, Matheve H, Lens L (2013) Fluctuating asymmetry and environmental stress: understanding the role of trait history. PLoS One 8:e57966

    Article  PubMed Central  PubMed  Google Scholar 

  • Debat V, Alibert P, David P, Paradis E, Auffray J-C (2000) Independence between developmental stability and canalization in the skull of the house mouse. Proc R Soc Lond B Biol Sci 267:423–430

    Article  CAS  Google Scholar 

  • Dryden I, Mardia K (1998) Statistical shape analysis. Wiley, Chichester

    Google Scholar 

  • Etges WJ, Veenstra CL, Jackson LL (2006) Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. VII. Effects of larval dietary fatty acids on adult epicuticular hydrocarbons. J Chem Ecol 32:2629–2646

    Article  CAS  PubMed  Google Scholar 

  • Floate K, Fox A (2000) Flies under stress: a test of fluctuating asymmetry as a biomonitor of environmental quality. Ecol Appl 10:1541–1550

    Article  Google Scholar 

  • Fogleman JC, Abril JR (1990) Ecological and evolutionary importance of host plant chemistry. Ecological and evolutionary genetics of Drosophila. Springer, New York, pp 121–143

    Chapter  Google Scholar 

  • Fraser SM, Lawton JH (1994) Host range expansion by British moths onto introduced conifers. Ecol Entomol 19:127–137

    Article  Google Scholar 

  • Graham JH, Freeman DC, Emlen JM (1993) Developmental stability: a sensitive indicator of populations under stress. ASTM Spec Tech Publ 1179:136

    Google Scholar 

  • Graham JH, Emlen JM, Freeman DC, Leamy LJ, Kieser JA (1998) Directional asymmetry and the measurement of developmental instability. Biol J Linn Soc 64:1–16

    Article  Google Scholar 

  • Graham JH, Raz S, Hel-Or H, Nevo E (2010) Fluctuating asymmetry: methods, theory, and applications. Symmetry 2:466–540

    Article  Google Scholar 

  • Graves SD, Shapiro AM (2003) Exotics as host plants of the California butterfly fauna. Biol Conserv 110:413–433

    Article  Google Scholar 

  • Hammond AC (1995) Leucaena toxicosis and its control in ruminants. J Anim Sci 73:1487–1492

    CAS  PubMed  Google Scholar 

  • Hawthorne DJ, Via S (2001) Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature 412:904–907

    Article  CAS  PubMed  Google Scholar 

  • Jahner JP, Bonilla MM, Badik KJ, Shapiro AM, Forister ML (2011) Use of exotic hosts by Lepidoptera: widespread species colonize more novel hosts. Evolution 65:2719–2724

    Article  PubMed  Google Scholar 

  • Jones CD (1998) The genetic basis of Drosophila sechellia’s resistance to a host plant toxin. Genetics 149:1899–1908

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones C (2004) Genetics of egg production in Drosophila sechellia. Heredity 92:235–241

    Article  CAS  PubMed  Google Scholar 

  • Jorge LR, Cordeiro-Estrela P, Klaczko LB, Moreira GR, Freitas AV (2011) Host-plant dependent wing phenotypic variation in the neotropical butterfly Heliconius erato. Biol J Linn Soc 102:765–774

    Article  Google Scholar 

  • Kark S, Lens L, Van Dongen S, Schmidt E (2004) Asymmetry patterns across the distribution range: Does the species matter? Biol J Linn Soc 81:313–324

    Article  Google Scholar 

  • Kircher H (1982) Chemical composition of cacti and its relationship to Sonoran Desert Drosophila. In: Barker JSF, Starmer WT (eds) Ecological genetics and evolution: the cactus–yeast–Drosophila model system. Academic Press, Australia, pp 143–158

  • Klingenberg CP (2002) Morphometrics and the role of the phenotype in studies of the evolution of developmental mechanisms. Gene 287:3–10

    Article  CAS  PubMed  Google Scholar 

  • Klingenberg CP (2003) Developmental instability as a research tool: using patterns of fluctuating asymmetry to infer the developmental origins of morphological integration. In: Polak M (ed) Developmental instability: causes and consequences. Oxford University Press, New York, pp 427–442

    Google Scholar 

  • Klingenberg CP (2004) Integration, modules and development: molecules to morphology to evolution. In: Pigliucci M, Preston K (eds) Phenotypic integration: studying the ecology and evolution of complex phenotypes. Oxford University Press, New York, pp 213–230

    Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Res 11:353–357

    Article  Google Scholar 

  • Klingenberg CP, McIntyre GS (1998) Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with procrustes methods. Evolution 52:1363–1375

    Article  Google Scholar 

  • Klingenberg CP, Monteiro LR (2005) Distances and directions in multidimensional shape spaces: implications for morphometric applications. Syst Biol 54:678–688

    Article  PubMed  Google Scholar 

  • Klingenberg CP, McIntyre GS, Zaklan SD (1998) Left–right asymmetry of fly wings and the evolution of body axes. Proc R Soc Lond B Biol Sci 265:1255–1259

    Article  CAS  Google Scholar 

  • Leamy LJ, Klingenberg CP (2005) The genetics and evolution of fluctuating asymmetry. Annu Rev Ecol Evol Syst 36:1–21

    Article  Google Scholar 

  • Lens L, Van Dongen S, Kark S, Matthysen E (2002) Fluctuating asymmetry as an indicator of fitness: Can we bridge the gap between studies? Biol Rev 77:27–38

    Article  PubMed  Google Scholar 

  • Lewontin RC (2000) The problems of population genetics evolutionary genetics: from molecules to morphology. Cambridge University Press, Cambridge, pp 5–23

    Google Scholar 

  • Ligoxygakis P, Strigini M, Averof M (2001) Specification of left–right asymmetry in the embryonic gut of Drosophila. Development 128:1171–1174

    CAS  PubMed  Google Scholar 

  • Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database. Invasive Species Specialist Group Species Survival Commission, World Conservation Union (IUCN), Auckland

    Google Scholar 

  • Luebert F, Pliscoff F (2006) Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria, Santiago, Chile, 316 pp

  • Marohasy J (1996) Host shifts in biological weed control: Real problems, semantic difficulties or poor science? Int J Pest Man 42:71–75

    Article  Google Scholar 

  • Matsubayashi KW, Ohshima I, Nosil P (2010) Ecological speciation in phytophagous insects. Entomol Exp Appl 134:1–27

    Article  Google Scholar 

  • Matsubayashi K, Kahono S, Katakura H (2011) Divergent host plant specialization as the critical driving force in speciation between populations of a phytophagous ladybird beetle. J Evol Biol 24:1421–1432

    Article  CAS  PubMed  Google Scholar 

  • Méndez-Abarca F, Mundaca EA, Vargas HA (2012) First remarks on the nesting biology of Hypodynerus andeus (Packard) (Hymenoptera, Vespidae, Eumeninae) in the Azapa valley, northern Chile. Rev Bras Entomol 56:240–243

    Article  Google Scholar 

  • Møller AP (1997) Developmental stability and fitness: a review. Am Nat 149:916–932

    Article  PubMed  Google Scholar 

  • Møller AP, Swaddle JP (1997) Asymmetry, developmental stability and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Monedero JL, Chavarrïas D, Löpez-Fanjul C (1997) The lack of mutational variance for fluctuating and directional asymmetry in Drosophila melanogaster. Proc R Soc Lond B Biol Sci 264:233–237

    Article  CAS  Google Scholar 

  • Mozaffarian F, Sarafrazi A, Ganbalani GN (2007) Host plant-associated population variation in the carob moth Ectomyelois ceratoniae in Iran: a geometric morphometric analysis suggests a nutritional basis. J Insect Sci 7:1–11. doi:10.1673/031.007.0201

  • Nijhout H, Davidowitz G (2003) Developmental perspectives on phenotypic variation, canalization, and fluctuating asymmetry. In: Developmental instability: causes and consequences. Oxford University Press, UK, pp 3–13

  • Nylin S, Nygren GH, Söderlind L, Stefanescu C (2009) Geographical variation in host plant utilization in the comma butterfly: the roles of time constraints and plant phenology. Evol Ecol 23:807–825

    Article  Google Scholar 

  • Ohshima I (2008) Host race formation in the leaf-mining moth Acrocercops transecta (Lepidoptera: Gracillariidae). Biol J Linn Soc 93:135–145

    Article  Google Scholar 

  • Palmer AR (1994) Fluctuating asymmetry analyses: a primer. In: Markow T (ed) Developmental instability: its origins and evolutionary implications. Kluwer, Dordrecht, pp 335–364

  • Palmer AR (2004) Symmetry breaking and the evolution of development. Science 306:828–833

    Article  CAS  PubMed  Google Scholar 

  • Palmer AR, Strobeck C (1986) Fluctuating asymmetry—measurement, analysis, patterns. Annu Rev Ecol Syst 17:391–421

    Article  Google Scholar 

  • Parsons P (1992) Fluctuating asymmetry: a biological monitor of environmental and genomic stress. Heredity 68:361–364

    Article  PubMed  Google Scholar 

  • Pélabon C, Hansen TF (2008) On the adaptive accuracy of directional asymmetry in insect wing size. Evolution 62:2855–2867

    Article  PubMed  Google Scholar 

  • Polak M (2003) Developmental instability: causes and consequences. Oxford University Press, Oxford

    Google Scholar 

  • Reiche C (1906) Flora de Chile, vol 4. Imprenta Cervantes, Santiago

    Google Scholar 

  • Rivera-Cabello D, Huanca-Mamani W, Vargas HA (2015) Macaria mirthae (Lepidoptera: Geometridae): confirmation of the use of an invasive host plant in the northern Atacama Desert of Chile based on DNA barcodes. Neotrop Entomol. doi:10.1007/s13744-015-0289-2

  • Rohlf FJ (2013) TPSdig, v. 2.17. State University, Stony Brook

  • Rohlf FJ, Slice D (1990) Extensions of the Procrustes methods for the optimal superimposition of landmarks. Syst Zool 39:40–59

    Article  Google Scholar 

  • Shapiro AM (2002) The Californian urban butterfly fauna is dependent on alien plants. Divers Distrib 8:31–40

    Article  Google Scholar 

  • Shapiro A (2006) Use of an exotic weed as an oviposition substrate of the high-Andean Pierid Phulia nymphula. J Lepid Soc 60:100

    Google Scholar 

  • Smith JM et al (1985) Developmental constraints and evolution: a perspective from the Mountain Lake conference on development and evolution. Q Rev Biol 60(3):265–287

  • Smith JM, Sondhi K (1960) The genetics of a pattern. Genetics 45:1039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith D, Crespi B, Bookstein F (1997) Fluctuating asymmetry in the honey bee, Apis mellifera: effects of ploidy and hybridization. J Evol Biol 10:551–574

    Article  Google Scholar 

  • Soto I, Carreira V, Soto E, Hasson E (2008) Wing morphology and fluctuating asymmetry depend on the host plant in cactophilic Drosophila. J Evol Biol 21:598–609

    Article  CAS  PubMed  Google Scholar 

  • Toga AW, Thompson PM (2003) Mapping brain asymmetry. Nat Rev Neurosci 4:37–48

    Article  CAS  PubMed  Google Scholar 

  • Tuinstra E, De Jong G, Scharloo W (1990) Lack of response to family selection for directional asymmetry in Drosophila melanogaster: left and right are not distinguished in development. Proc R Soc Lond B Biol Sci 241:146–152

    Article  CAS  Google Scholar 

  • Van Dongen S (2006) Fluctuating asymmetry and developmental instability in evolutionary biology: past, present and future. J Evol Biol 19:1727–1743

    Article  CAS  PubMed  Google Scholar 

  • Van Valen L (1962) A study of fluctuating asymmetry. Evolution 16(2):125–142

  • Vanbergen AJ, Raymond B, Pearce IS, Watt AD, Hails RS, Hartley SE (2003) Host shifting by Operophtera brumata into novel environments leads to population differentiation in life-history traits. Ecol Entomol 28:604–612

    Article  Google Scholar 

  • Vargas HA (2013) Use of a native and an exotic Malvaceae by the little known skipper Pyrgus bocchoris trisignatus (Mabille) (Hesperiidae) in northern Chile. J Lepid Soc 67:225–226

    Google Scholar 

  • Vargas HA, Parra LE (2009) Prospección de lepidópteros antófagos asociados a Acacia macracantha Willd. (Fabaceae) en el norte de Chile. Rev Bras Entomol 52:291–293

    Article  Google Scholar 

  • Vargas HA, Mundaca EA (2014) First record of an exotic host plant for the oligophagous moth Macaria mirthae (Geometridae) in the coastal valleys of the northern Chilean Atacama Desert. J Lepid Soc 68:292–295

  • Vargas HA, Parra LE, Hausmann A (2005) Macaria mirthae: a new species of Ennominae (Lepidoptera: Geometridae) from Chile. Neotrop Entomol 34:571–576

    Article  Google Scholar 

  • Vargas HA, Vargas-Ortiz M, Huanca-Mamani W, Hausmann A (2014) Prey identification in nests of the potter wasp Hypodynerus andeus (Packard) (Hymenoptera, Vespidae, Eumeninae) using DNA barcodes. Rev Bras Entomol 58:157–160

    Article  Google Scholar 

  • Via S (1990) Ecological genetics and host adaptation in herbivorous insects: the experimental study of evolution in natural and agricultural systems. Annu Rev Entomol 35:421–446

    Article  CAS  PubMed  Google Scholar 

  • Waddington CH (1942) Canalization of development and the inheritance of acquired characters. Nature 150:563–565

    Article  Google Scholar 

Download references

Acknowledgments

We thank the two anonymous reviewers that provided us with valuable comments that clearly improved our manuscript. We would like to thank María José Sanzana-Muñoz for her help during data collection and Dr. Wilson Huanca for kindly providing his laboratory equipment. Financial support was obtained from project DGI-9710-13, from Universidad de Tarapacá. HB and TP are grateful to Becas Chile scholarship program, Conicyt, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo A. Benítez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benítez, H.A., Vargas, H.A. & Püschel, T.A. Left–right asymmetry and morphological consequences of a host shift in the oligophagous Neotropical moth Macaria mirthae (Lepidoptera: Geometridae). J Insect Conserv 19, 589–598 (2015). https://doi.org/10.1007/s10841-015-9779-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-015-9779-0

Keywords

Navigation