Skip to main content
Log in

Mobility of ringlet butterflies in high-elevation alpine grassland: effects of habitat barriers, resources and age

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Dispersal is a crucial feature for the long-term survival of metapopulations. Each individual that leaves the habitat and enters the matrix takes a risk. Consequently, even winged organisms, like butterflies, are often extremely sedentary and spend much of their lifetime in very restricted areas. For such species, large roads may be a serious obstacle for movement. Here, we aim to study if a large and highly frequented road in an alpine environment hinders the movement of relatively sedentary butterflies of the genus Erebia. We conducted a mark-release-recapture study on six alpine Erebia species (E. eriphyle, E. epiphron, E. gorge, E. pharte, E. pandrose and E. nivalis) in the Hohe Tauern National Park, Austria. We measured the following variables which we hypothesize to affect movement probability: (a) species identity, (b) nectar resource availability, (c) butterfly age or (d) patch isolation through the road. Population density estimates ranged from 230 ± 35 individuals for E. pharte to 1,316 ± 205 individuals for E. epiphron per hectare. More than 50 percent of recaptured butterflies were tracked within distances of <25 m. The maximum flight distance recorded was 332 m (E. epiphron). Our data indicate that species identity generally did not have a significant effect on mobility patterns in the studied Erebia butterflies. Only one species, E. pharte, was more likely to change the plot than the others. High resource availability decreased butterfly movement. Age influenced mobility, with mid-aged butterflies being most likely to move between patches. The road hindered dispersal. Butterflies which had to cross the road to get to another suitable habitat patch were less likely to move than butterflies that did not have to cross the road.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahman M, Karlsson B (2009) Flight endurance in relation to adult age in the green-veined white butterfly Pieris napi. Ecol Entomol 34:783–787

    Article  Google Scholar 

  • Andreassen HP, Ims RA (1998) The effects of experimental habitat destruction and patch isolation on space use and fitness parameters in female root vole Microtus oeconomus. J Anim Ecol 67:941–952

    Article  Google Scholar 

  • Bergman M, Gotthard K, Wiklund C (2011) Mate acquisition by females in a butterfly: the effects of mating status and age on female mate-locating behaviour. Anim Behav 81:225–229

  • Berwaerts K, Van Dyck H, Aerts P (2002) Does flight morphology relate to flight performance? An experimental test with the butterfly Pararge aegeria. Funct Ecol 16:484–491

    Article  Google Scholar 

  • Bhattacharya M, Primack RB, Gerwein J (2003) Are roads and railroads barriers to bumblebee movement in a temperate suburban conservation area? Biol Conserv 109:37–45

    Article  Google Scholar 

  • Brussard PF, Ehrlich PR (1970) The population structure of Erebia epipsodea (Lepidoptera: Satyrinae). Ecology 51:119–129

    Article  Google Scholar 

  • Casula P (2006) Evaluating hypotheses about dispersal in a vulnerable butterfly. Ecol Res 21:263–270

    Article  Google Scholar 

  • Dennis RLH (1982) Observations on habitats and dispersal made from oviposition markers in north Cheshire Anthocharis cardamines (Lepidoptera: Pieridae). Entomol Gaz 33:151–159

    Google Scholar 

  • Dennis RLH (1986) Motorways and cross-movements. An insect’s ‘mental map’ of the M56 in Cheshire. Bull Amat Entomol Soc 45:228–243

    Google Scholar 

  • Dennis RLH (2004) Butterfly habitats, broad-scale biotope affiliations, and structural exploitation of vegetation at finer scales: the matrix revisited. Ecol Entomol 29:744–752

    Article  Google Scholar 

  • Dennis RLH, Dapporto L, Dover JW, Shreeve TG (2013) Corridors and barriers in biodiversity conservation: a novel resource-based habitat perspective for butterflies. Biodivers Conserv 22:2709–2734

    Article  Google Scholar 

  • Dias MP, Granadeiro JP, Palmeirim JM (2009) Searching behavior of foraging waders: does feeding success influence their walking? Anim Behav 77:1203–1209

    Article  Google Scholar 

  • Fahrig L (2001) How much habitat is enough? Biol Conserv 100:65–74

    Article  Google Scholar 

  • Fahrig L (2007) Non-optimal animal movement in human-altered landscapes. Funct Ecol 21:1003–1015

    Article  Google Scholar 

  • Fischer H, Kutsch W (2000) Relationships between body mass, motor output and flight variables during free flight of juvenile and mature adult locusts, Schistocerca gregaria. J Exp Biol 203:2723–2735

    CAS  PubMed  Google Scholar 

  • Fjellstad WJ (1998) The landscape ecology of butterflies in traditionally managed Norwegian farmland. Dissertation, Durham University

  • Grill A, Schtickzelle N, Cleary DFR, Nève G, Menken SBJ (2006) Ecological differentiation between the Sardinian endemic Maniola nurag and the pan-European M. jurtina. Biol J Linn Soc 89:561–574

    Article  Google Scholar 

  • Großglockner Hochalpenstraße (2013) Die Großglockner Hochalpenstraße heute. https://web.archive.org/web/20080107171310/http:/www.grossglockner.at/hochalpenstrasse/geschichte/geschichte03.htm. Accessed 12 Dec 2013

  • Gutiérrez D (1997) Importance of historical factors on species richness and composition of butterfly assemblages (Lepidoptera: Rhopalocera) in a northern Iberian mountain range. J Biogeogr 24:77–88

    Article  Google Scholar 

  • Hanski I, Alho J, Moilanen A (2000) Estimating the parameters of survival and migration of individuals in metapopulations. Ecology 81:239–251

    Article  Google Scholar 

  • Hanski I, Saastamoinen M, Ovaskainen O (2006) Dispersal-related life-history trade-offs in a butterfly metapopulation. J Anim Ecol 75:91–100

    Article  PubMed  Google Scholar 

  • Hardy PB, Sparks TH, Dennis RLH (2014) The impact of climatic change on butterfly geography: does climatic change produce coincident trends in populations, distributions and ranges? Biodivers Conserv 23:855–876

    Article  Google Scholar 

  • Hill JK, Thomas CD, Lewis OT (1998) Flight morphology in fragmented populations of a rare British butterfly, Hesperia comma. Biol Conserv 87:277–283

    Article  Google Scholar 

  • Huemer P, Wieser C (2008) National park Hohe Tauern—Schmetterlinge. Tyrolia, Innsbruck

    Google Scholar 

  • Junker M, Wagner S, Gros P, Schmitt T (2010) Changing demography and dispersal behaviour: ecological adaptations in an alpine butterfly. Oecologia 164:971–980

    Article  PubMed  Google Scholar 

  • Karlsson B (1994) Feeding habits and change of body composition with age in three nymphalid butterfly species. Oikos 69:224–230

    Article  Google Scholar 

  • Kemp DJ (2002) Butterfly contest and flight physiology: why do older males fly harder? Behav Ecol 13:456–461

    Article  Google Scholar 

  • Kleckova I, Konvicka M, Klecka J (2014) Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: importance of fine-scale habitat heterogeneity. J Therm Biol 41:50–58

    Article  PubMed  Google Scholar 

  • Kudrna O, Harpke A, Lux K, Pennerstorfer J, Schweiger O, Settele J, Wiemers M (2011) Distribution atlas of butterflies in Europe. Gesellschaft für Schmetterlingsschutz, Halle

    Google Scholar 

  • Kuras T, Benes J, Fric Z, Konvicka M (2003) Dispersal patterns of endemic alpine butterflies with contrasting population structures: Erebia epiphron and E. sudetica. Popul Ecol 45:115–123

    Article  Google Scholar 

  • Kuussaari M, Nieminen M, Hanski I (1996) An experimental study of migration in the Glanville fritillary butterfly Melitaea cinxia. J Anim Ecol 65:791–801

    Article  Google Scholar 

  • Loertscher M, Erhardt A, Zettel J (1995) Microdistribution of butterflies in a mosaic-like habitat: the role of nectar sources. Ecography 18:15–26

    Article  Google Scholar 

  • Morton ACG (1982) The effects of marking and capture on recapture frequencies of butterflies. Oecologia 53:105–111

    Article  Google Scholar 

  • Munguira ML, Thomas JA (1992) Use of road verges by butterfly and burnet populations, and the effect of roads on adult dispersal and mortality. J Appl Ecol 29:316–329

    Article  Google Scholar 

  • Neumayer J, Gros P, Schwarz-Waubke M (2005) Ressourcenaufteilung alpiner Gemeinschaften von Tagfaltern (Lepidoptera, Papilionoidea, Hesperioidea) und Widderchen (Zygaenoidea): phänologie, Höhen- und Biotoppräferenzen. Linzer biol Beit 37:1431–1450

    Google Scholar 

  • Nève G, Barascud B, Hughes R, Aubert J, Descimon H, Lebrun P, Baguette M (1996) Dispersal, colonization power and metapopulation structure in the vulnerable butterfly Proclossiana eunomia (Lepidoptera: Nymphalidae). J Appl Ecol 33:14–22

    Article  Google Scholar 

  • Nowicki P, Vrabec V, Binzenhöfer B, Feil J, Zakšek B, Hovestadt T, Settele J (2013) Butterfly dispersal in inhospitable matrix: rare, risky, but long-distance. Landsc Ecol 29:401–412

    Article  Google Scholar 

  • Poniatowski D, Fartmann T (2010) What determines the distribution of a flightless bush-cricket (Metrioptera brachyptera) in a fragmented landscape? J Insect Conserv 14:637–645

    Article  Google Scholar 

  • Quinn RM, Gaston KJ, Blackburn TM, Eversham BC (1997) Abundance-range size relationships of macrolepidoptera in Britain: the effects of taxonomy and life history variables. Ecol Entomol 22:453–461

    Article  Google Scholar 

  • Robinson SK, Thompson FR, Donovan TM, Whitehead DR, Faaborg J (1995) Regional forest fragmentation and the nesting success of migratory birds. Science 267:1987–1990

    Article  CAS  PubMed  Google Scholar 

  • Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494

    Article  CAS  Google Scholar 

  • Schmitt T, Habel JC, Rödder D, Louy D (2014) Effects of recent and past climatic shifts on the genetic structure of the high mountain yellow-spotted ringlet butterfly Erebia manto (Lepidoptera, Satyrinae): a conservation problem. Glob Change Biol 20(7):2045–2061

    Article  Google Scholar 

  • Schtickzelle N, Mennechez G, Baguette M (2006) Dispersal depression with habitat fragmentation in the bog fritillary butterfly. Ecology 87:1057–1065

    Article  PubMed  Google Scholar 

  • Schwarz CJ, Arnason AN (1996) A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics 52:860–873

    Article  Google Scholar 

  • Settele J, Kudrna O, Harpke A, Kühn I, Van Swaay C, Verovnik R, Warren M, Wiemers M, Hanspach J, Hickler T, Kühn E, Van Halder I, Veling K, Vliegenthart A, Wynhoff I, Schweiger O (2008) Climatic risk atlas of European butterflies. BioRisk 1 (Special Issue). Pensoft Publishers, Sofia

    Google Scholar 

  • Skórka P, Lenda M, Morón D, Kalarus K, Tryjanowski P (2013) Factors affecting road mortality and the suitability of road verges for butterflies. Biol Conserv 159:148–157

    Article  Google Scholar 

  • Slamova I, Klecka J, Konvicka M (2011) Diurnal behavior and habitat preferences Erebia aethiops, an aberrant lowland species of a mountain butterfly clade. J Insect Behav 24:230–246

    Article  Google Scholar 

  • Slamova I, Klecka J, Konvicka M (2012) Woodland and grassland mosaic from a butterfly perspective: habitat use by Erebia aethiops (Lepidoptera: Satyridae). Insect Conserv Divers 6:243–254

    Article  Google Scholar 

  • Sonderegger P (2005) Die Erebien der Schweiz (Lepidoptera: Satyrinae, Genus Erebia). Peter Sonderegger, Brügg

    Google Scholar 

  • Stadel C, Slupetzky H, Kremser H (1996) Nature conservation, traditional living space, or tourist attraction? The Hohe Tauern National Park, Austria. Mt Res Dev 16:1–16

    Article  Google Scholar 

  • Stjernholm F, Karlsson B (2008) Flight muscle breakdown in the green-veined white butterfly, Pieris napi (Lepidoptera: Pieridae). Eur J Entomol 105:87–91

    Article  Google Scholar 

  • Ugelvig LV, Andersen A, Boomsma JJ, Nash DR (2012) Dispersal and gene flow in the rare, parasitic Large Blue butterfly Maculinea arion. Mol Ecol 21:3224–3236

    Article  CAS  PubMed  Google Scholar 

  • Valtonen A, Saarinen K (2005) A highway intersection as an alternative habitat for a meadow butterfly: effect of mowing, habitat geometry and roads on the ringlet (Aphantopus hyperantus). Ann Zool Fenn 42:545–556

    Google Scholar 

  • Walters JR, Stafford C, Hardcastle TJ, Jiggins CD (2012) Evaluating female remating rates in light of spermatophore degradation in Heliconius butterflies: pupal-mating monandry versus adult-mating polyandry. Ecol Entomol 37:257–268

    Article  Google Scholar 

  • Westerberg L, Lindström T, Nilsson E, Wennergren U (2008) The effect on dispersal from complex correlations in small-scale movement. Ecol Model 213:263–272

    Article  Google Scholar 

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:120–139

    Article  Google Scholar 

  • Zografou K, Kati V, Grill A, Wilson RJ, Tzirkalli E, Pamperis LN, Halley JM (2014) Signals of climate change in butterfly communities in a Mediterranean protected area. PLoS One 9(1):e87245. doi:10.1371/journal.pone.0087245.g003

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Hohe Tauern National Park for the permission to perform our studies within the National Park. We thank the Land Salzburg for the permission to work with Erebia butterflies alongside the Großglockner Hochalpenstraße. We would like to thank two anonymous referees for valuable comments. This study was supported by funds from the Faculty of Life Sciences, University of Vienna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Grill.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polic, D., Fiedler, K., Nell, C. et al. Mobility of ringlet butterflies in high-elevation alpine grassland: effects of habitat barriers, resources and age. J Insect Conserv 18, 1153–1161 (2014). https://doi.org/10.1007/s10841-014-9726-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-014-9726-5

Keywords

Navigation