Skip to main content
Log in

Acoustic phonon modulation and electron–phonon interaction in semiconductor slabs and nanowires

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The acoustic phonon modulation (confinement) in semiconductor nanostructures and their interaction with electrons are reviewed. Special emphasis will be placed on free-standing and layered slabs, as well as nanowires. Analysis includes acoustic phonon dispersion relations, displacement wave functions, amplitudes, form factor, electron-phonon scattering rate, and electron mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bannov, N., Mitin, V., Stroscio, M.: Confined acoustic phonons in a free-standing quantum welland their interaction with electrons. Phys. Status Solidi 183, 131 (1994)

    Article  Google Scholar 

  2. Bannov, N., Aristov, V., Mitin, V., Stroscio, M.A.: Electron relaxation times due to the deformation-potential interaction of electrons with confined acoustic phonons in a free-standing quantum well. Phys. Rev. B 51, 9930 (1995)

    Article  Google Scholar 

  3. Bannov, N., Aristov, V., Mitin, V.: Electron momentum relaxation time and mobility in a free-standing quantum well. J. Appl. Phys. 78, 5503 (1995)

    Article  Google Scholar 

  4. Glavin, B.A., Pipa, V.I., Mitin, V.V., Stroscio, M.A.: Relaxation of a two-dimensional electron gas in semiconductor thin films at low temperatures: Role of acoustic phonon confinement. Phys. Rev. B 65, 205315 (2002)

    Article  Google Scholar 

  5. Uno, S., Mori, N.: Analytical description of intravalley acoustic phonon limited electron mobility in ultrathin Si plate incorporating phonon modulation due to plate interfaces. Jpn. J. Appl. Phys. 46, L923 (2007)

    Article  Google Scholar 

  6. Uno, S., Mori, N.: Form factor increase and its physical origins in electron-modulated acoustic phonon interaction in a free-standing semiconductor plate. Math. Comput. Model. 51, 863 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Uno, S., Yong, D., Mori, N.: Sum rules and universality in electron-modulated acoustic phonon interaction in a free-standing semiconductor plate. Phys. Rev. B 79, 235328 (2009)

    Article  Google Scholar 

  8. Komirenko, S.M., Kim, K.W., Demidenko, A.A., Kochelap, V.A., Stroscio, M.A.: Generation and amplification of sub-THz coherent acoustic phonons under the drift of two-dimensional electrons. Phys. Rev. B 62, 7459 (2000)

    Article  Google Scholar 

  9. Pokatilov, E.P., Nika, D.L., Balandin, A.A.: A phonon depletion effect in ultrathin heterostructures with acoustically mismatched layers. Appl. Phys. Lett. 85, 825 (2004)

    Article  Google Scholar 

  10. Pokatilov, E.P., Nika, D.L., Balandin, A.A.: Confined electron-confined phonon scattering rates in wurtzite AlN/GaN/AlN heterostructures. J. Appl. Phys. 95, 5626 (2004)

    Article  Google Scholar 

  11. Pokatilov, E.P., Nika, D.L., Balandin, A.A.: Phonon spectrum and group velocities in AlN/GaN/AlN and related heterostructures. Superlattices Microstruct. 33, 155 (2003)

    Article  Google Scholar 

  12. Ezawa, H.: Phonons in a half space. Ann. Phys. 67, 438 (1971)

    Article  Google Scholar 

  13. Kawaji, S., Ezawa, H., Nakamura, K.: Semiconductor inversion layers and phonons in half-space. J. Vac. Sci. Technol. 9, 762 (1971)

    Article  Google Scholar 

  14. Donetti, L., Gámiz, F., Roldán, J.B., Godoy, A.: Acoustic phonon confinement in silicon nanolayers: Effect on electron mobility. J. Appl. Phys. 100, 013701 (2006)

    Article  Google Scholar 

  15. Nishiguchi, N., Ando, Y., Wybourne, M.N.: Acoustic phonon modes of free-standing rectangular wires. Superlattices Micostruct. 22, 213 (1997)

    Article  Google Scholar 

  16. Nishiguchi, N., Ando, Y., Wybourne, M.N.: Acoustic phonon modes of rectangular quantum wires. J. Phys. Condens. Matter 9, 5751 (1997)

    Article  Google Scholar 

  17. Nishiguchi, N.: Electron scattering by surface vibration in a rectangular quantum wire. Physica E 13, 1 (2002)

    Article  Google Scholar 

  18. Yu, S.G., Kim, K.W., Stroscio, M.A., Iafrate, G.J.: Electron-acoustic-phonon scattering rates in cylindrical quantum wires. Phys. Rev. B 51, 4695 (1995)

    Article  Google Scholar 

  19. Svizhenko, A., Bandyopadhyay, S., Stroscio, M.A.: The effect of acoustic phonon confinement on the momentum and energy relaxation of hot carriers in quantum wires. J. Phys. Condens. Matter 10, 6091 (1998)

    Article  Google Scholar 

  20. Komirenko, S.M., Kim, K.W., Stroscio, M.A., Kochelap, V.A.: Renormalization of acoustic phonon spectra and rudiments of the Peierls transition in free-standing quantum wires. Phys. Rev. B 58, 16360 (1998)

    Article  Google Scholar 

  21. Stroscio, M.A., Sirenko, Y.M., Yu, S., Kim, K.W.: Acoustic phonon quantization in buried waveguides and resonators. J. Phys. Condens. Matter 8, 2143 (1996)

    Article  Google Scholar 

  22. Yu, S.G., Kim, K.W., Stroscio, M.A., Iafrate, G.J., Ballato, A.: Electron interaction with confined acoustic phonons in cylindrical quantum wires via deformation potential. J. Appl. Phys. 80, 2815 (1996)

    Article  Google Scholar 

  23. Yu, S.G., Kim, K.W., Stroscio, M.A., Iafrate, G.J., Ballato, A.: Electron-acoustic-phonon scattering rates in rectangular quantum wires. Phys. Rev. B 50, 1733 (1994)

    Article  Google Scholar 

  24. Ramayya, E.B., Vasileska, D., Goodnick, S.M., Knezevic, I.: Electron transport in silicon nanowires: The role of acoustic phonon confinement and surface roughness scattering. J. Appl. Phys. 104, 063711 (2008)

    Article  Google Scholar 

  25. Hattori, J., Uno, S., Mori, N., Nakazato, K.: Universality in electron-modulated-acoustic-phonon interactions in a free-standing semiconductor nanowire. Math. Comput. Model. 51, 880 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hattori, J., Uno, S., Mori, N., Nakazato, K.: Scaling consideration and compact model of electron scattering enhancement due to acoustic phonon modulation in an ultrafine free-standing cylindrical semiconductor nanowire. J. Appl. Phys. 107, 033712 (2010)

    Article  Google Scholar 

  27. Nishiguchi, N.: Guided acoustic phonons in quantum wires: Theory of phonon fiber. Jpn. J. Appl. Phys. 33, 2852 (1994)

    Article  Google Scholar 

  28. Nishiguchi, N.: Confined and interface acoustic phonons in a quantum wire. Phys. Rev. B 50, 10970 (1994)

    Article  Google Scholar 

  29. Nishiguchi, N.: Electron scattering due to confined and extended acoustic phonons in a quantum wire. Phys. Rev. B 54, 1494 (1996)

    Article  Google Scholar 

  30. Nishiguchi, N.: Resonant acoustic-phonon modes in a quantum wire. Phys. Rev. B 52, 5279 (1995)

    Article  Google Scholar 

  31. Pokatilov, E.P., Nika, D.L., Balandin, A.A.: Acoustic phonon engineering in coated cylindrical nanowires. Superlattices Microstruct. 38, 168 (2005)

    Article  Google Scholar 

  32. Fonoberov, V.A., Balandin, A.A.: Giant enhancement of the carrier mobility in silicon nanowires with diamond coating. Nano Lett. 6, 2442 (2006)

    Article  Google Scholar 

  33. Hattori, J., Uno, S., Mori, N., Nakazato, K.: Electron-modulated-acoustic-phonon interactions in a coated silicon nanowire. Jpn. J. Appl. Phys. 49, 04DN09 (2010)

    Article  Google Scholar 

  34. Uno, S., Mori, N., Nakazato, K., Koshida, N., Mizuta, H.: Reduction of acoustic-phonon deformation potential in one-dimensional array of Si quantum dot interconnected with tunnel oxides. J. Appl. Phys. 97, 113506 (2005)

    Article  Google Scholar 

  35. Uno, S., Mori, N., Nakazato, K., Koshida, N., Mizuta, H.: Theoretical investigation of electron-phonon interaction in one-dimensional silicon quantum dot array interconnected with silicon oxide layers. Phys. Rev. B 72, 035337 (2005)

    Article  Google Scholar 

  36. Stroscio, M.A., Kim, K.W., Yu, S.G., Ballato, A.: Quantized acoustic phonon modes in quantum wires and quantum dots. J. Appl. Phys. 76, 4670 (1994)

    Article  Google Scholar 

  37. Stroscio, M.A., Dutta, M., Rufo, S., Yang, J.: Dispersionand damping of acoustic phonons in quantum dots. IEEE Trans. Nanotechnol. 3, 32 (2004)

    Article  Google Scholar 

  38. Rufo, S., Dutta, M., Stroscio, M.A.: Acoustic modes in free and embedded quantum dots. J. Appl. Phys. 93, 2900 (2003)

    Article  Google Scholar 

  39. Ovsyuk, N.N., Nvikov, V.N.: Influence of a glass matrix on acoustic phonons confined in microcrystals. Phys. Rev. B 53, 3113 (1996)

    Article  Google Scholar 

  40. Kahn, D., Kim, K.W., Stroscio, M.A.: Quantized vibrational modes of nanospheres and nanotubes in the elastic continuum model. J. Appl. Phys. 89, 5107 (2001)

    Article  Google Scholar 

  41. Graff, K.F.: Wave Motion in Elastic Solids. Dover, New York (1975)

    MATH  Google Scholar 

  42. Auld, B.A.: Acoustic Fields and Waves in Solids. Krieger, Malabar (1990)

    Google Scholar 

  43. Stroscio, M.A., Dutta, M.: Phonons in Nanostructures. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeyasu Uno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uno, S., Hattori, J., Nakazato, K. et al. Acoustic phonon modulation and electron–phonon interaction in semiconductor slabs and nanowires. J Comput Electron 10, 104–120 (2011). https://doi.org/10.1007/s10825-010-0343-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-010-0343-6

Keywords

Navigation