Skip to main content

Advertisement

Log in

Designing the molecular future

  • Perspective
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Approximately 25 years ago the first computer applications were conceived for the purpose of automated ‘de novo’ drug design, prominent pioneering tools being ALADDIN, CAVEAT, GENOA, and DYLOMMS. Many of these early concepts were enabled by innovative techniques for ligand-receptor interaction modeling like GRID, MCSS, DOCK, and CoMFA, which still provide the theoretical framework for several more recently developed molecular design algorithms. After a first wave of software tools and groundbreaking applications in the 1990s—expressly GROW, GrowMol, LEGEND, and LUDI representing some of the key players—we are currently witnessing a renewed strong interest in this field. Innovative ideas for both receptor and ligand-based drug design have recently been published. We here provide a personal perspective on the evolution of de novo design, highlighting some of the historic achievements as well as possible future developments of this exciting field of research, which combines multiple scientific disciplines and is, like few other areas in chemistry, subject to continuous enthusiastic discussion and compassionate dispute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gund P, Wipke WT, Langridge R (1974) Computer searching of a molecular structure file for pharmacophoric patterns. Comput Chem Res Educ Technol 3:5–21

    Google Scholar 

  2. Martin YC, Bures MG, Willett P (1990) Searching databases of three-dimensional structures. In: Lipkowitz K, Boyd D (eds) Reviews in computational chemistry, vol 1. VCH, Weinheim, pp 213–263

    Chapter  Google Scholar 

  3. Sheridan RP, Venkataraghavan R (1987) Designing novel nicotinic agonists by searching a database of molecular shapes. J Comput Aided Mol Des 1:243–256

    Article  CAS  Google Scholar 

  4. Lewis RA, Dean PM (1989) Automated site-directed drug design: the formation of molecular templates in primary structure generation. Proc R Soc Lond B 236:141–162

    Article  CAS  Google Scholar 

  5. VanDrie JH, Weininger D, Martin YC (1989) ALADDIN: an integrated tool for computer-assisted molecular design and pharmacophore recognition from geometric, steric, and substructure searching of three-dimensional molecular structures. J Comput Aided Mol Des 3:225–240

    Article  CAS  Google Scholar 

  6. Bartlett PA, Shea GT, Telfer SJ, Waterman S (1989) CAVEAT: a program to facilitate the structure-derived design of biologically active molecules. In: Roberts SM (ed) Molecular recognition in chemical and biological problems, vol 78. Spec Publ R Soc Chem, Cambridge, pp 182–196

  7. Lauri G, Bartlett PA (1994) CAVEAT: a program to facilitate the design of organic molecules. J Comput Aided Mol Des 8:51–66

    Article  CAS  Google Scholar 

  8. Carhart RE, Smith DH, Gray NAB, Nourse JG, Djerassi C (1981) GENOA: a computer program for structure elucidation utilizing overlapping and alternative substructures. J Org Chem 46:1708–1718

    Article  CAS  Google Scholar 

  9. Wise M, Cramer RD, Smith D, Exman I (1983) Progress in three-dimensional drug design: the use of real time color graphics and computer postulation of bioactive molecules in DYLOMMS. In: Dearden JC (ed) Quantitative approaches to drug design. Elsevier, Amsterdam, pp 145–146

    Google Scholar 

  10. Goodford PJ (1995) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28:849–857

    Article  Google Scholar 

  11. Miranker A, Karplus M (1991) Functionality maps of binding sites: a multiple copy simultaneous search method. Proteins 11:29–34

    Article  CAS  Google Scholar 

  12. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161:269–288

    Article  CAS  Google Scholar 

  13. Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  Google Scholar 

  14. Jackson RC (1995) Update on computer-aided drug design. Curr Opin Biotechnol 6:646–651

    Article  CAS  Google Scholar 

  15. Böhm HJ (1996) Current computational tools for de novo ligand design. Curr Opin Biotechnol 7:433–436

    Article  Google Scholar 

  16. Bohacek RS, McMartin C (1997) Modern computational chemistry and drug discovery: structure generating programs. Curr Opin Chem Biol 1:157–161

    Article  CAS  Google Scholar 

  17. Marrone TJ, Briggs JM, McCammon JA (1997) Structure-based drug design: computational advances. Annu Rev Pharmacol Toxicol 37:71–90

    Article  CAS  Google Scholar 

  18. Kubinyi H (1998) Combinatorial and computational approaches in structure-based drug design. Curr Opin Drug Discov Devel 1:16–27

    CAS  Google Scholar 

  19. Moon JB, Howe WJ (1991) Computer design of bioactive molecules: a method for receptor-based de novo ligand design. Proteins 11:314–328

    Article  CAS  Google Scholar 

  20. Bohacek RS, McMartin C (1994) Multiple highly diverse structures complementary to enzyme binding sites: results of extensive application of a de novo design method incorporating combinatorial growth. J Am Chem Soc 116:5560–5571

    Article  CAS  Google Scholar 

  21. Nishibata Y, Itai A (1991) Automatic creation of drug candidate structures based on receptor structure. Starting point for artificial lead generation. Tetrahedron 47:8985–8990

    Article  CAS  Google Scholar 

  22. Nishibata Y, Itai A (1993) Confirmation of usefulness of a structure construction program based on three-dimensional receptor structure for rational lead generation. J Med Chem 36:2921–2928

    Article  CAS  Google Scholar 

  23. Böhm HJ (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6:61–78

    Article  Google Scholar 

  24. Böhm HJ (1992) LUDI: rule-based automatic design of new substituents for enzyme inhibitor leads. J Comput Aided Mol Des 6:593–606

    Article  Google Scholar 

  25. Loving K, Alberts I, Sherman W (2010) Computational approaches for fragment-based and de novo design. Curr Top Med Chem 10:14–32

    Article  CAS  Google Scholar 

  26. Hartenfeller M, Schneider G (2011) Enabling future drug discovery by de novo design. WIREs Comp Mol Sci 1:742–759

    Article  CAS  Google Scholar 

  27. Schneider G, Fechner U (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 4:649–663

    Article  CAS  Google Scholar 

  28. Reutlinger M, Guba W, Martin RE, Alanine AI, Hoffmann T, Klenner A, Hiss JA, Schneider P, Schneider G (2011) Neighborhood-preserving visualization of adaptive structure-activity landscapes: application to drug discovery. Angew Chem Int Ed Engl. doi:10.1002/anie.201105156

  29. Schneider G, Hartenfeller M, Reutlinger M, Tanrikulu Y, Proschak E, Schneider P (2009) Voyages to the (un)known: adaptive design of bioactive compounds. Trends Biotechnol 27:18–26

    Article  CAS  Google Scholar 

  30. Dimova D, Wawer M, Wassermann AM, Bajorath J (2011) Design of multitarget activity landscapes that capture hierarchical activity cliff distributions. J Chem Inf Model 51:258–266

    Article  CAS  Google Scholar 

  31. Beddell CR, Goodford PJ, Norrington FE, Wilkinson S, Wootton R (1976) Compounds designed to fit a site of known structure in human haemoglobin. Br J Pharmacol 57:201–209

    CAS  Google Scholar 

  32. Beddell CR, Goodford PJ, Stammers DK, Wootton R (1979) Species differences in the binding of compounds designed to fit a site of known structure in adult human haemoglobin. Br J Pharmacol 65:535–543

    CAS  Google Scholar 

  33. Lewell XQ, Judd DB, Watson SP, Hann MM (1998) RECAP—retrosynthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry. J Chem Inf Comput Sci 38:511–522

    Article  CAS  Google Scholar 

  34. Vinkers HM, de Jonge MR, Daeyaert FF, Heeres J, Koymans LM, van Lenthe JH, Lewi PJ, Timmerman H, Van Aken K, Janssen PA (2003) SYNOPSIS: synthesize and optimize system in silico. J Med Chem 46:2765–2773

    Article  CAS  Google Scholar 

  35. Schneider G, Lee ML, Stahl M, Schneider P (2000) De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks. J Comput Aided Mol Des 14:487–494

    Article  CAS  Google Scholar 

  36. Wang R, Gao Y, Lai L (2000) LigBuilder: a multi-purpose program for structure-based drug design. J Mol Model 6:498–516

    Article  CAS  Google Scholar 

  37. Kandil S, Biondaro S, Vlachakis D, Cummins AC, Coluccia A, Berry C, Leyssen P, Neyts J, Brancale A (2009) Discovery of a novel HCV helicase inhibitor by a de novo drug design approach. Bioorg Med Chem Lett 19:2935–2937

    Article  CAS  Google Scholar 

  38. Feher M, Gao Y, Baber JC, Shirley WA, Saunders J (2008) The use of ligand-based de novo design for scaffold hopping and sidechain optimization: two case studies. Bioorg Med Chem 16:422–427

    Article  CAS  Google Scholar 

  39. Lanier MC, Feher M, Ashweek NJ, Loweth CJ, Rueter JK, Slee DH, Williams JP, Zhu YF, Sullivan SK, Brown MS (2007) Selection, synthesis, and structure-activity relationship of tetrahydropyrido[4, 3-d]pyrimidine-2, 4-diones as human GnRH receptor antagonists. Bioorg Med Chem 15:5590–5603

    Article  CAS  Google Scholar 

  40. Rogers-Evans M, Alanine A, Bleicher K, Kube D, Schneider G (2004) Identification of novel cannabinoid receptor ligands via evolutionary de novo design and rapid parallel synthesis. QSAR Comb Sci 26:426–430

    Article  Google Scholar 

  41. Schneider G, Neidhart W, Giller T, Schmid G (1999) ‘Scaffold-hopping’ by topological pharmacophore search: a contribution to virtual screening. Angew Chem Int Ed Engl 38:2894–2896

    Article  CAS  Google Scholar 

  42. Alig L, Alsenz J, Andjelkovic M, Bendels S, Bénardeau A, Bleicher K, Bourson A, David-Pierson P, Guba W, Hildbrand S, Kube D, Lübbers T, Mayweg AV, Narquizian R, Neidhart W, Nettekoven M, Plancher JM, Rocha C, Rogers-Evans M, Röver S, Schneider G, Taylor S, Waldmeier P (2008) Benzodioxoles: novel cannabinoid-1 receptor inverse agonists for the treatment of obesity. J Med Chem 51:2115–2127

    Article  CAS  Google Scholar 

  43. Bissantz C, Kuhn B, Stahl M (2010) A medicinal chemist’s guide to molecular interactions. J Med Chem 53:5061–5084

    Article  CAS  Google Scholar 

  44. Mauser H, Guba W (2008) Recent developments in de novo design and scaffold hopping. Curr Opin Drug Discov Devel 11:365–374

    CAS  Google Scholar 

  45. Langdon SR, Ertl P, Brown N (2010) Bioisosteric replacement and scaffold hopping in lead generation and optimization. Mol Inf 29:366–385

    Article  CAS  Google Scholar 

  46. Bailey D, Brown D (2001) High-throughput chemistry and structure-based design: survival of the smartest. Drug Discov Today 6:57–59

    Article  Google Scholar 

  47. Bleicher KH, Böhm HJ, Müller K, Alanine AI (2003) Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov 2:369–378

    Article  CAS  Google Scholar 

  48. Schneider G (2010) Virtual screening: an endless staircase? Nat Rev Drug Discov 9:273–276

    Article  CAS  Google Scholar 

  49. Krüger BA, Dietrich A, Baringhaus KH, Schneider G (2009) Scaffold-hopping potential of fragment-based de novo design: the chances and limits of variation. Comb Chem High Throughput Screen 12:383–396

    Article  Google Scholar 

  50. Sheridan RP, Rusinko A III, Nilakantan R, Venkataraghavan R (1989) Searching for pharmacophores in large coordinate data bases and its use in drug design. Proc Natl Acad Sci USA 86:8165–8169

    Article  CAS  Google Scholar 

  51. Babine RE, Bleckman TM, Kissinger CR, Showalter R, Pelletier LA, Lewis C, Tucker K, Moomaw E, Parge HE, Villafranca JE (1995) Design, synthesis and X-ray crystallographic studies of novel FKBB-12 ligands. Bioorg Med Chem Lett 5:1719–1724

    Article  CAS  Google Scholar 

  52. Reich SH, Melnick M, Davies JF II, Appelt K, Lewis KK, Fuhry MA, Pino M, Trippe AJ, Nguyen D, Dawson H, Wu BW, Musick L, Kosa M, Kahil D, Webber S, Gehlhaar DK, Andrada D, Shetty B (1995) Protein structure-based design of potent orally bioavailable, nonpeptide inhibitors of human immunodeficiency virus protease. Proc Natl Acad Sci USA 92:3298–3302

    Article  CAS  Google Scholar 

  53. Böhm HJ, Banner DW, Weber L (1999) Combinatorial docking and combinatorial chemistry: design of potent non-peptide thrombin inhibitors. J Comput Aided Mol Des 13:51–56

    Article  Google Scholar 

  54. Ripka AS, Satyshur KA, Bohacek RS, Rich DH (2001) Aspartic protease inhibitors designed from computer-generated templates bind as predicted. Org Lett 3:2309–2312

    Article  CAS  Google Scholar 

  55. Böhm HJ, Boehringer M, Bur D, Gmuender H, Huber W, Klaus W, Kostrewa D, Kuehne H, Luebbers T, Meunier-Keller N, Mueller F (2000) Novel inhibitors of DNA gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening. J Med Chem 43:2664–2674

    Article  Google Scholar 

  56. Schneider G, Clément-Chomienne O, Hilfiger L, Schneider P, Kirsch S, Böhm HJ, Neidhart W (2000) Virtual screening for bioactive molecules by evolutionary de novo design. Angew Chem Int Ed Engl 39:4130–4133

    CAS  Google Scholar 

  57. Honma T, Hayashi K, Aoyama T, Hashimoto N, Machida T, Fukasawa K, Iwama T, Ikeura C, Ikuta M, Suzuki-Takahashi I, Iwasawa Y, Hayama T, Nishimura S, Morishima H (2001) Structure-based generation of a new class of potent Cdk4 inhibitors: new de novo design strategy and library design. J Med Chem 44:4615–4627

    Article  CAS  Google Scholar 

  58. Honma T, Yoshizumi T, Hashimoto N, Hayashi K, Kawanishi N, Fukasawa K, Takaki T, Ikeura C, Ikuta M, Suzuki-Takahashi I, Hayama T, Nishimura S, Morishima H (2001) A novel approach for the development of selective Cdk4 inhibitors: library design based on locations of Cdk4 specific amino acid residues. J Med Chem 44:4628–4640

    Article  CAS  Google Scholar 

  59. Ji H, Zhang W, Zhang M, Kudo M, Aoyama Y, Yoshida Y, Sheng C, Song Y, Yang S, Zhou Y, Lü J, Zhu J (2003) Structure-based de novo design, synthesis, and biological evaluation of non-azole inhibitors specific for lanosterol 14alpha-demethylase of fungi. J Med Chem 46:474–485

    Article  CAS  Google Scholar 

  60. Liebeschuetz JW, Jones SD, Morgan PJ, Murray CW, Rimmer AD, Roscoe JM, Waszkowycz B, Welsh PM, Wylie WA, Young SC, Martin H, Mahler J, Brady L, Wilkinson K (2002) PRO_SELECT: combining structure-based drug design and array-based chemistry for rapid lead discovery. 2. The development of a series of highly potent and selective factor Xa inhibitors. J Med Chem 45:1221–1232

    Article  CAS  Google Scholar 

  61. Pierce AC, Rao G, Bemis GW (2004) BREED: generating novel inhibitors through hybridization of known ligands application to CDK2, P38, and HIV protease. J Med Chem 47:2768–2775

    Article  CAS  Google Scholar 

  62. Davies M, Heikkilä T, McConkey GA, Fishwick CW, Parsons MR, Johnson AP (2009) Structure-based design, synthesis, and characterization of inhibitors of human and Plasmodium falciparum dihydroorotate dehydrogenases. J Med Chem 52:2683–2693

    Article  CAS  Google Scholar 

  63. Jorgensen WL, Ruiz-Caro J, Tirado-Rives J, Basavapathruni A, Anderson KS, Hamilton AD (2006) Computer-aided design of non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg Med Chem Lett 16:663–667

    Article  CAS  Google Scholar 

  64. Schüller A, Suhartono M, Fechner U, Tanrikulu Y, Breitung S, Scheffer U, Göbel MW, Schneider G (2008) The concept of template-based de novo design from drug-derived molecular fragments and its application to TAR RNA. J Comput Aided Mol Des 22:59–68

    Article  Google Scholar 

  65. Firth-Clark S, Kirton SB, Willems HM, Williams A (2008) De novo ligand design to partially flexible active sites: application of the ReFlex algorithm to carboxypeptidase A, acetylcholinesterase, and the estrogen receptor. J Chem Inf Model 48:296–305

    Article  CAS  Google Scholar 

  66. Park H, Bahn YJ, Ryu SE (2009) Structure-based de novo design and biochemical evaluation of novel Cdc25 phosphatase inhibitors. Bioorg Med Chem Lett 19:4330–4334

    Article  CAS  Google Scholar 

  67. Schneider G, Geppert T, Hartenfeller M, Reisen F, Klenner A, Reutlinger M, Hähnke V, Hiss JA, Zettl H, Keppner S, Spänkuch B, Schneider P (2011) Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors. Future Med Chem 3:415–424

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to Hugo Kubinyi for valuable feedback on the manuscript. This study was supported by the Swiss National Science Foundation (grant 205321-134783) and the OPO-Foundation Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisbert Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, G. Designing the molecular future. J Comput Aided Mol Des 26, 115–120 (2012). https://doi.org/10.1007/s10822-011-9485-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9485-2

Keywords

Navigation