Skip to main content
Log in

Quasi-decidability of a Fragment of the First-Order Theory of Real Numbers

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

In this paper we consider a fragment of the first-order theory of the real numbers that includes systems of n equations in n variables, and for which all functions are computable in the sense that it is possible to compute arbitrarily close interval approximations. Even though this fragment is undecidable, we prove that—under the additional assumption of bounded domains—there is a (possibly non-terminating) algorithm for checking satisfiability such that (1) whenever it terminates, it computes a correct answer, and (2) it always terminates when the input is robust. A formula is robust, if its satisfiability does not change under small continuous perturbations. We also prove that it is not possible to generalize this result to the full first-order language—removing the restriction on the number of equations versus number of variables. As a basic tool for our algorithm we use the notion of degree from the field of topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This follows from the fact that X resp. Y can be separated by open \(\varepsilon '\)-neighborhoods U(X) resp. U(Y) with positive distance from each other, and the fact that using the uniform continuity of |f| and g, \(X'\subseteq U(X)\) and \(Y'\subseteq U(Y)\) for \(\alpha \) small enough.

  2. The set \(\{(p,x) \mid g(p,x)>\alpha /4\}\) is an open neighborhood of \(\{p_0\}\times \bar{{\varOmega }}\) and the compactness of \(\bar{{\varOmega }}\) implies that there is a neighborhood \(U(p_0)\) of \(\{p_0\}\) such that \(U(p_0)\times {\varOmega }\subseteq \{(p,x) \mid g(p,x)>\alpha /4\}\).

  3. That is, it may call \(\mathcal {I}(f)\) with any input an arbitrary number of times, but apart from the results of calling \(\mathcal {I}(f)\) it does not use any properties of f, nor does it analyze how \(\mathcal {I}(f)\) is computed.

  4. This can be shown as follows. The function \(\tilde{f}:= f/|f|{:} \partial B\rightarrow S^{n-1}\) is homotopic to \(g(x):=\frac{\tilde{f}(x)-\tilde{f}(-x)}{|\tilde{f}(x)-\tilde{f}(-x)|}\) via the homotopy \(H(t,x)=\frac{\tilde{f}(x)-t\tilde{f}(-x)}{|\tilde{f}(x)-t\tilde{f}(-x)|}\), so \(\tilde{f}\) and g have the same degree. Assumptions on B imply that \(\partial B\simeq S^{n-1}\) and an odd map \(g(-x)=-g(x)\) between spheres has odd degree [14, p. 180].

  5. http://topdeg.sourceforge.net.

  6. http://chomp.rutgers.edu.

  7. http://www.linalg.org/gap.html.

  8. http://comptop.stanford.edu/u/programs/plex/.

References

  1. Aberth, O.: Computation of topological degree using interval arithmetic, and applications. Math Comput 62(205), 171–178 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akbarpour, B., Paulson, L.C.: MetiTarski: an automatic theorem prover for real-valued special functions. J. Autom. Reason. 44, 175–205 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alefeld, G., Frommer, A., Heindl, G., Mayer, J.: On the existence theorems of Kantorovich, Miranda and Borsuk. Electron. Trans. Numer. Anal. 17, 102–111 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Baigger, G.: Die Nichtkonstruktivität des Brouwerschen Fixpunktsatzes. Arch. Math. Log. 25(1), 183–188 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  6. Bhattacharyya, S.P., Chapellat, H., Keel, L.H.: Robust Control. Prentice Hall, Englewood Cliffs NJ (1995). http://www.ece.tamu.edu/~bhatt/books/robustcontrol/

  7. Boult, T.E., Sikorski, K.: Complexity of computing topological degree of Lipschitz functions in \(n\) dimensions. J. Complex. 2, 44–59 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. In: Cooper, S., Lwe, B., Sorbi, A. (eds.) New Computational Paradigms, pp. 425–491. Springer, New York (2008)

    Chapter  Google Scholar 

  9. Bruckner, A.M., Bruckner, J.B., Thomson, B.S.: Real Analysis. Prentice Hall PTR, Englewood Cliffs NJ (1997)

    MATH  Google Scholar 

  10. Casagrande, A., Piazza, C., Policriti, A.: Discrete semantics for hybrid automata. Discrete Event Dyn. Syst. 19(4), 471–493 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caviness, B.F., Johnson, J.R. (eds.): Quantifier Elimination and Cylindrical Algebraic Decomposition. Springer, Wien (1998)

    MATH  Google Scholar 

  12. Collins, P.: Computability and representations of the zero set. Electron. Notes Theor. Comput. Sci. 221, 37–43 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Damm, W., Pinto, G., Ratschan, S.: Guaranteed termination in the verification of LTL properties of non-linear robust discrete time hybrid systems. Int. J. Found. Comput. Sci. (IJFCS) 18(1), 63–86 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dieudonné, J.: A History of Algebraic and Differential Topology, 1900–1960. Modern Birkhäuser Classics. Springer, Berlin (2009)

    MATH  Google Scholar 

  15. Erdelsky, P.J.: Computing the Brouwer degree in \({R}^2\). Math. Comput. 27(121), 133–137 (1973)

    MathSciNet  MATH  Google Scholar 

  16. Franek, P., Krčál, M.: Robust satisfiability of systems of equations. In: Proc. Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA) 62(4), (2015). Extended version in arXiv:1402.0858

  17. Franek, P., Ratschan, S.: Effective topological degree computation based on interval arithmetic. Math. Comput. 84, 1265–1290 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Franek, P., Ratschan, S., Zgliczynski, P.: Satisfiability of systems of equations of real analytic functions is quasi-decidable. In: MFCS 2011: 36th international symposium on mathematical foundations of computer science, volume 6907 of LNCS, pp. 315–326. Springer, Berlin (2011)

  19. Fränzle, M.: Analysis of hybrid systems: an ounce of realism can save an infinity of states. In: Flum, J., Rodriguez-Artalejo, M. (eds). Computer Science Logic (CSL’99), Number 1683 in LNCS. Springer, Berlin (1999)

  20. Fränzle, M.: What will be eventually true of polynomial hybrid automata. In: Kobayashi, N., Pierce, B.C. (eds.) Theoretical Aspects of Computer Software (TACS 2001), Number 2215 in LNCS. Springer, Berlin (2001)

    Google Scholar 

  21. Frommer, A., Lang, B.: Existence tests for solutions of nonlinear equations using Borsuk’s theorem. SIAM J. Numer. Anal. 43(3), 1348–1361 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gao, S., Avigad, J., Clarke, E.M.: \(\delta \)-complete decision procedures for satisfiability over the reals. In: IJCAR, volume 7364 of Lecture Notes in Computer Science, pp. 286–300. Springer, Berlin Heidelberg (2012)

  23. Gao, S., Avigad, J., Clarke, E.M.: \(\delta \)-decidability over the reals. In: LICS, pp. 305–314. IEEE (2012)

  24. Hirsch, M.: Differential Topology. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  25. Kearfott, B.: An efficient degree-computation method for a generalized method of bisection. Numer. Math. 32, 109–127 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kearfott, R.B.: On existence and uniqueness verification for non-smooth functions. Reliab. Comput. 8(4), 267–282 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ko, K.-I.: Complexity Theory of Real Functions, Progress in Theoretical Computer Science, pp. 40–70. Birkhäuser, Boston (1991)

  28. Milnor, J.W.: Topology from the Differential Viewpoint. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

  29. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia, PA (2009)

    Book  MATH  Google Scholar 

  30. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  31. O’Regan, D., Cho, Y., Chen, Y.Q.: Topological Degree Theory and Applications. Chapman & Hall, London (2006)

    MATH  Google Scholar 

  32. Outerelo, E., Ruiz, J.M.: Mapping Degree Theory. American Mathematical Society, Providence, RI (2009)

    Book  MATH  Google Scholar 

  33. Potgieter, P.H.: Computable counter-examples to the Brouwer fixed-point theorem. ArXiv e-prints (April 2008)

  34. Ratschan, S.: Continuous first-order constraint satisfaction. In: Calmet, J., Benhamou, B., Caprotti, O., Henocque, L., Sorge, V. (eds.) Artificial Intelligence, Automated Reasoning, and Symbolic Computation, number 2385 in LNCS, pp. 181–195. Springer, Berlin (2002)

  35. Ratschan, S.: Quantified constraints under perturbations. J. Symb. Comput. 33(4), 493–505 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ratschan, S.: Convergent approximate solving of first-order constraints by approximate quantifiers. ACM Trans. Comput. Log. 5(2), 264–281 (2004)

    Article  MathSciNet  Google Scholar 

  37. Ratschan, S.: Efficient solving of quantified inequality constraints over the real numbers. ACM Trans. Comput. Log. 7(4), 723–748 (2006)

    Article  MathSciNet  Google Scholar 

  38. Ratschan, S.: Safety verification of non-linear hybrid systems is quasi-semidecidable. In: TAMC 2010: 7th Annual Conference on Theory and Applications of Models of Computation, volume 6108 of LNCS, pp. 397–408. Springer, Berlin (2010)

  39. Rump, S.M.: A note on epsilon-inflation. Reliab. Comput. 4, 371–375 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Spielman, D.A., Teng, S.-H.: Smoothed analysis: an attempt to explain the behavior of algorithms in practice. Commun. ACM 52(10), 76–84 (2009)

    Article  Google Scholar 

  42. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University of California Press, Berkeley (1951). Also in [11]

    MATH  Google Scholar 

  43. Wang, P.S.: The undecidability of the existence of zeros of real elementary functions. J. ACM 21(4), 586–589 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yap, C.K.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.). Handbook of Discrete and Computational Geometry, chapter 41, pp. 927–952. Chapmen & Hall/CRC, Boca Raton, FL, 2nd edition (2004). Revised and expanded from 1997 version

  45. Zhou, K.: Essentials of Robust Control. Prentice Hall, Englewood Cliffs, NJ (1997)

    MATH  Google Scholar 

Download references

Acknowledgments

The work of Stefan Ratschan and Peter Franek was supported by MŠMT Project Number OC10048 and the Czech Science Foundation (GACR) Grants Number P202/12/J060 and 15-14484S with Institutional Support RVO:67985807.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Ratschan.

Additional information

This is an extended and revised version of a paper that appeared in the proceedings of the 36th International Symposium on Mathematical Foundations of Computer Science [18]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franek, P., Ratschan, S. & Zgliczynski, P. Quasi-decidability of a Fragment of the First-Order Theory of Real Numbers. J Autom Reasoning 57, 157–185 (2016). https://doi.org/10.1007/s10817-015-9351-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-015-9351-3

Keywords

Navigation