Skip to main content
Log in

Characterization of semiconductor devices and wafer materials via sub-nanosecond time-correlated single-photon counting

  • Published:
Journal of Applied Spectroscopy Aims and scope

Time-correlated single-photon counting (TCSPC) of semiconductor photoluminescence is presented as a versatile technique for addressing diverse aspects of charge carrier dynamics on a pico- to microsecond timescale. Particularly, advantages of expanding this time-domain technique with spectral and spatial resolution are demonstrated. By differentiating the spectral channels within the photoluminescence signal, dynamics of the charge carriers can be correlated to particular materials and substructures for analyzing their functions in complex, multicomponent systems. Diffusion and transport phenomena become directly accessible, and localized variations of charge carrier lifetimes can be associated with a particular morphology when the measurements are carried out in the context of microscopic imaging. These general capabilities are demonstrated specifi cally on a GaAsP quantum well embedded both in an AlGaAs layer structure and in a multi-layer CdTe-CdS heterojunction system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed., New Jersey, Wiley (2007).

    Google Scholar 

  2. R. K. Ahrenkiel, N. Calla, S. W. Johnston, and W. K. Metzger, Sol. Energy Mater. Sol. Cells, 94, 2197–2204 (2010).

    Article  Google Scholar 

  3. S. Rein, Lifetime Spectroscopy: A Method of Defect Characterization in Silicon for Photovoltaic Applications, Springer Series in Materials Science, Berlin, Springer (2010).

    Google Scholar 

  4. P. V. Santos, F. Alsina, S. K. Zhang, R. Hey, A. García-Cristóbal, and A. Cantarero, Physica E, 13, 467–472 (2002).

    Article  ADS  Google Scholar 

  5. W. K. Metzger, D. Albin, D. Levin, P. Sheldon, X. Li, B. M. Keyes, and R. K. Ahrenkiel, J. Appl. Phys. 94, 3549–3555 (2003).

    Article  ADS  Google Scholar 

  6. D. A. Bender, M. P. Hasselbeck, and M. Sheik-Bahae, Proc. SPIE Int. Soc. Opt. Eng., 6461, 646109 (2007).

    Article  Google Scholar 

  7. B. M. Keyes, P. Dippo, W. K. Metzger, J. AbuSchama, and R. Noufi , J. Appl. Phys. 94, 5584–5591 (2003).

    Article  ADS  Google Scholar 

  8. H.-M. Cheng and F.-W. Hsieh, Nanotechnology, 21, 485202 (2010).

    Article  ADS  Google Scholar 

  9. A. Douhal, C. Martin, M. Ziolek, and M. J. Marchena, J. Phys. Chem. C, 115, 23183–23191 (2011).

    Article  Google Scholar 

  10. H.-J. Huang, F.-C. Chien, P. Chen, K.-C. Ho, and C.-W. Chu, Anal. Chem., 82, 01669–01673 (2010).

    Article  Google Scholar 

  11. J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C.-S. Hsu, Nano, 5, 959–967 (2011).

    Google Scholar 

  12. S. Itzhakov, S. Buhbut, E. Tauber, T. Geiger, A. Zaban, and D. Oron, Adv. Energy Mater., 1, 626–633 (2011).

    Article  Google Scholar 

  13. Z. Bian, T. Tachikawa, S.-C. Cui, M. Fujitsuka, and T. Majima, Chem. Sci., 3, 0370–0379 (2012).

    Article  Google Scholar 

  14. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, Springer Series in Chemical Physics, Berlin, Springer (2005).

    Book  Google Scholar 

  15. G. Erbert, F. Bugge, A. Knauer, J. Sebastian, A. Thies, H. Wenzel, M. Weyers, and G. Tränkle, IEEE J. Sel. Top. Quantum Electron., 5, 780 (1999).

    Article  Google Scholar 

  16. H. Wenzel, G. Erbert, F. Bugge, A. Knauer, J. Maege, J. Sebastian, R. Staske, K. Vogel, and G. Tränkle, Proc. SPIE Int. Soc. Opt. Eng., 3947, 32–39 (2000).

    Article  ADS  Google Scholar 

  17. A. Knauer, F. Bugge, G. Erbert, H. Wenzel, K. Vogel, U. Zeimer, and M. Weyers, J. Electron. Mater., 29, 53–56 (2000).

    Article  ADS  Google Scholar 

  18. P. Crump, H. Wenzel, G. Erbert, P. Ressel, M. Zorn, F. Bugge, S. Einfeldt, R. Staske, U. Zeimer, A. Pietrzak, and G. Tränkle, IEEE Photonics Technol. Lett., 20, 1378–1380 (2008).

    Article  ADS  Google Scholar 

  19. J. Sebastian, G. Beister, F. Bugge, F. Buhrandt, G. Erbert, H. G. Hänsel, R. Hülsewede, A. Knauer, W. Pittroff, R. Staske, M. Schröder, H. Wenzel, M. Weyers, and G. Tränkle, IEEE J. Sel. Top. Quantum Electron., 7, 334–339 (2001).

    Article  Google Scholar 

  20. M. Hädrich, H. Metzner, U. Reislöhner, and C. Kraft, Sol. Energy Mater. Sol. Cells, 95, 887–893 (2011).

    Article  Google Scholar 

  21. B.E. McCandless and R.W. Birkmire, Solar Cells, 31, 527–535 (1991).

    Article  Google Scholar 

  22. W. K. Metzner, D. Albin, M. J. Romero, P. Dippo, and M. Young, J. Appl. Phys., 99, 103703 (2006).

    Article  ADS  Google Scholar 

  23. V. Yu. Timoshenko, A.B. Petrenko, M. N. Stolyarov, T. Dittrich, W. Fuessel, and J. Rappich, J. Appl. Phys., 85, 4171–4175 (1999).

    Article  ADS  Google Scholar 

  24. M. Roczen, E. Malguth, M. Schade, A. Schöpke, A. Laades, M. Blech, O. Gref, T. Barthel, J. A. Töfflinger, M. Schmidt, H. S. Leipner, L. Korte, and B. Rech, J. Non-Cryst. Sol., 358, 2253–2256 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Buschmann.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 80, No. 3, pp. 459–467, May–June, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buschmann, V., Hempel, H., Knigge, A. et al. Characterization of semiconductor devices and wafer materials via sub-nanosecond time-correlated single-photon counting. J Appl Spectrosc 80, 449–457 (2013). https://doi.org/10.1007/s10812-013-9786-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-013-9786-4

Keywords

Navigation