Skip to main content
Log in

Allelopathic interactions between microcystin-producing and non-microcystin-producing cyanobacteria and green microalgae: implications for microcystins production

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Most mixed culture studies on the allelopathic interactions between toxic and nontoxic cyanobacteria with phytoplankton species rarely investigate the role of microcystins (MC) production and regulation in the course of the studies. This study investigated the interactions between intact cells of toxic (Microcystis aeruginosa (Kützing) Kützing) and nontoxic (Microcystis panniformis Komárek et al.) cyanobacteria with those of green algae (Monoraphidium convolutum (Corda) Komárková-Legnerová and Scenedesmus acuminatus (Largerheim) Chodat) as well as the effects of their respective crude extracts (5 and 10 μg.L−1) on their growth under controlled conditions. M. aeruginosa and M. panniformis were able to significantly (p < 0.05) inhibit the growth of the green algae with M. convolutum being the most affected. The green alga S. acuminatus in return was able to inhibit the growth of the both cyanobacteria. In response to the presence of a competing species in the growth medium, M. aeruginosa significantly increased its MC production per cell with the progression of the experiment, having the highest concentration at the end of the experiment. On the other hand, the extracts of the cyanobacteria had no significant inhibitory effect on the green algal strains investigated, while those of the green algae also had significant inhibitory effect on the growth of M. aeruginosa. In conclusion, both cyanobacterial and green algal strains investigated were negatively affected by the presence of competing species. M. aeruginosa responded to the presence of green algae by increasing its MC production. The green algal strains significantly inhibited the growth of M. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Babica P, Bláha L, Marsalek B (2006) Exploring the natural role of microcystins—a review of effects on photoautotrophic organisms. J Phycol 42:9–20

  • Bártova K, Hilscherova K, Babica P, Marsálek B, Bláha L (2011) Effects of microcystin and complex cyanobacterial samples on the growth and oxidative stress parameters in green alga Pseudokirchneriella subcapitata and comparison with the model oxidative stressor-herbicide paraquat. Environ Toxicol 26:641–648

    Article  PubMed  Google Scholar 

  • Bar-Yosef Y, Sukenik A, Hadas O, Viner-Mozzini Y, Kaplan A (2010) Enslavement in the water body by toxic Aphanizomenon ovalisporum, inducing alkaline phosphatase in phytoplanktons. Curr Biol 20:1557–1561

    Article  CAS  PubMed  Google Scholar 

  • B-Beres V, Grigorszky I, Vasas G, Borics G, Varbiro G, Nagy SA, Borbely G, Bacsi I (2012) The effects of Microcystis aeruginosa (cyanobacterium) on Cryptomonas ovata (Cryptophyta) in laboratory cultures: why these organisms do not coexist in steady-state assemblages? Hydrobiologia 691:97–107

    Article  CAS  Google Scholar 

  • Bittencourt-Oliveira MC (2003) Detection of potential microcystin-producing cyanobacteria in Brazilian reservoirs with a mcyB molecular marker. Harmful Algae 2:51–60

    Article  Google Scholar 

  • Bittencourt-Oliveira MC, Oliveira MC, Pinto E (2011) Diversity of microcystin-producing genotypes in Brazilian strains of Microcystis (Cyanobacteria). Braz J Biol 71:209–216

    Article  CAS  PubMed  Google Scholar 

  • Bittencourt-Oliveira MC, Camargo-Santos D, Moura AN, Francisco IB, Dias CTS, Molica RJR, Cordeiro-Araújo MK (2013) Effect of toxic and non-toxic crude extracts on different Microcystis species (Cyanobacteria). Afr J Microbiol Res 7:2596–2600

    Google Scholar 

  • Briand E, Gugger M, François JCC, Bernard J, Humbert F, Quiblier C (2008) Temporal variations in the dynamics of potentially microcystin-producing strains in a bloom-forming Planktothrix agardhii (cyanobacterium) population. Appl Environ Microbiol 74:3839–3848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Briand E, Bormans M, Quiblier C, Salençon MJ, Humbert JF (2012) Evidence of the cost of the production of microcystins by Microcystis aeruginosa under differing light and nitrate environmental conditions. PLoS One 7(1):e29981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Campos L, Araújo P, Pinheiro C, Azevedo J, Osório H, Vasconcelos V (2013) Effects on growth, antioxidant enzyme activity and levels of extracellular proteins in the green alga Chlorella vulgaris exposed to crude cyanobacterial extracts and pure microcystin and cylindrospermopsin. Ecotoxicol Environ Saf 94:45–53

    Article  CAS  PubMed  Google Scholar 

  • Chen YW, Qin BQ, Teubner K, Dokulil MT (2003) Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J Plankton Res 25:445–453

    Article  Google Scholar 

  • Dunker S, Jakob T, Wilhelm C (2013) Contrasting effects of the cyanobacterium Microcystis aeruginosa on the growth and physiology of two green algae, Oocystis marsonii and Scenedesmus obliquus, revealed by flow cytometry. Freshw Biol 58:1573–1587

    Article  Google Scholar 

  • Fogg GE, Thake B (1987) Algae Cultures and Phytoplankton Ecology. 3rd edn London: The University of Wisconsins Press Ltd p 269

  • Frossard V, Versanne-Janodet S, Aleya L (2014) Factors supporting harmful macroalgal blooms in flowing waters: a 2-year study in the lower Ain River, France. Harmful Algae 33:19–28

    Article  Google Scholar 

  • Guillard RRL (1973) Division rates. In: Stein J (ed) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, Cambridge, pp 289–311

    Google Scholar 

  • Harada KI, Ozaki K, Tsuzuki S, Kato H, Hasegawa M, Kuroda E, Arii S, Tsuji K (2009) Blue color formation of cyanobacteria with b-cyclocitral. J Chem Ecol 35:1295–1301

    Article  CAS  PubMed  Google Scholar 

  • Harel M, Weiss G, Lieman-Hurwitz J, Gun J, Lev O, Lebendiker M, Temper V, Block C, Sukenik A, Zohary T, Braun S, Carmeli S, Kaplan A (2013) Interactions between Scenedesmus and Microcystis may be used to clarify the role of secondary metabolites. Environ Microbiol Rep 5:97–104

    Article  CAS  PubMed  Google Scholar 

  • Hu ZQ, Liu YD, Li DH (2004) Physiological and biochemical analyses of microcystin-RR toxicity to the cyanobacterium Synechococcus elongatus. Environ Toxicol 19:571–577

    Article  CAS  PubMed  Google Scholar 

  • Jochimsen EM, Carmichael WW, An JS, Cardo DM, Cookson ST, Holmes CE, Antunes MB, de Melo Filho DA, Lyra TM, Barreto VS, Azevedo SM, Jarvis WR (1998) Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. New Engl J Med 338:873–878

    Article  CAS  PubMed  Google Scholar 

  • Jonsson PR, Pavia H, Toth G (2009) Formation of harmful algal blooms cannot be explained by allelopathic interactions. Proc Natl Acad Sci 106:11177–11182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaplan A, Harel M, Kaplan-Levy RN, Hadas O, Sukenik A, Dittmann E (2012) The languages spoken in the water body (or the biological role of cyanobacterial toxins). Front Microbiol 3:138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kemp A, John J (2006) Microcystins associated with Microcystis dominated blooms in the southwest wetlands, Western Australia. Environ Toxicol 21:125–130

    Article  CAS  PubMed  Google Scholar 

  • Kuwata A, Miyazaki T (2000) Effects of ammonium supply rates on competition between Microcystis novacekii (Cyanobacteria) and Scenedesmus quadricauda (Chlorophyta): simulation study. Ecol Modell 135:81–87

    Article  CAS  Google Scholar 

  • Leao PN, Vasconcelos MTSD, Vasconcelos VM (2009) Allelopathic activity of cyanobacteria on green microalgae at low cell densities. Eur J Phycol 44:347–355

    Article  Google Scholar 

  • Leflaive J, Ten-Hage L (2007) Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshw Biol 52:199–214

    Article  CAS  Google Scholar 

  • Li Y, Li D (2012) Competition between toxic Microcystis aeruginosa and nontoxic Microcystis wesenbergii with Anabaena PCC7120. J Appl Phycol 24:69–78

    Article  CAS  Google Scholar 

  • Lund JWG, Kipling C, Lecren ED (1958) The invert microscope method of estimating algae numbers and statistical basis of estimations by counting. Hydrobiologia 11:143–170

    Article  Google Scholar 

  • Magrann T, Dunbar SG, Boskovic DS, Hayes WK (2012) Impacts of Microcystis on algal biodiversity and use of new technology to remove Microcystis and dissolved nutrients. Lakes Reserv Res Manag 17:231–239

    Article  CAS  Google Scholar 

  • Máthé C, M-Hamvas M, Vasas G, Surányi G, Bácsi I, Beyer D, Tóth S, Tímár M, Borbély G (2007) Microcystin-LR, a cyanobacterial toxin, induces growth inhibition and histological alterations in common reed (Phragmites australis) plants regenerated from embryogenic calli. New Phytol 176:824–835

  • Mello MM, Soares MCS, Roland F, Lurling M (2012) Growth inhibition and colony formation in the cyanobacterium Microcystis aeruginosa induced by the cyanobacterium Cylindrospermopsis raciborskii. J Plankton Res 34:987–994

    Article  Google Scholar 

  • Papadimitriou T, Katsiapi M, Kormas KA, Moustaka-Gouni M, Kagalou I (2013) Artificially-born “killer” lake: phytoplankton based water quality and microcystin affected fish in a reconstructed lake. Sci Total Environ 452–453:116–124

    Article  PubMed  Google Scholar 

  • Pinheiro C, Azevedo J, Campos A, Loureiro S, Vasconcelos V (2013) Absence of negative allelopathic effects of cylindrospermopsin and microcystin-LR on selected marine and freshwater phytoplankton species. Hydrobiologia 705:27–42

    Article  CAS  Google Scholar 

  • Rashidan KK, Bird DF (2001) Role of predatory bacteria in the termination of a cyanobacterial bloom. Microb Ecol 41:97–105

    CAS  PubMed  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Article  Google Scholar 

  • Ross C, Santiago-Vazquez L, Paul V (2006) Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aeruginosa. Aquat Toxicol 78:66–73

    Article  CAS  PubMed  Google Scholar 

  • Sedmak B, Carmeli S, Elersek T (2008) “Non-toxic” cyclic peptides induce lysis of cyanobacteria—an effective cell population density control mechanism in cyanobacterial blooms. Microb Ecol 56:201–209

    Article  CAS  PubMed  Google Scholar 

  • Sevilla E, Martin-Luna B, Vela L, Bes MT, Fillat MF, Peleato ML (2008) Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC 7806. Environ Microbiol 10:2476–2483

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Song L (2007) Comparative studies on physiological responses to phosphorus in two phenotypes of bloom-forming Microcystis. Hydrobiologia 592:475–486

    Article  CAS  Google Scholar 

  • Sukenik A, Eshkol R, Livne A, Hadas O, Rom M, Tchernov D, Vardi A, Kaplan A (2002) Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): a novel allelopathic mechanism. Limnol Oceanogr 47:1656–1663

    Article  Google Scholar 

  • Takeya K, Kuwata A, Yoshida M, Miyazaki T (2004) Effect of dilution rate on competitive interactions between the cyanobacterium Microcystis novacekii and the green alga Scenedesmus quadricauda in mixed chemostat cultures. J Plankton Res 26:29–35

    Article  Google Scholar 

  • Wiegand C, Pflugmacher S (2005) Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol Appl Pharm 203:201–218

    Article  CAS  Google Scholar 

  • Xu N, Duan S, Li A, Zhang C, Cai Z, Hu Z (2010) Effects of temperature, salinity and irradiance on the growth of the harmful dinoflagellate Prorocentrum donghaienense Lu. Harmful Algae 9:13–17

    Article  Google Scholar 

  • Yang J, Deng X, Xian Q, Qian X, Li A (2014) Allelopathic effect of Microcystis aeruginosa on Microcystis wesenbergii: microcystin-LR as a potential allelochemical. Hydrobiologia 727:65–73

  • You XH, Wang ZL, Shi XY et al (2007) Advances in the studies of phytoplankton interspecific competition. Trans Oceanol Limn 4:161–166

    Google Scholar 

  • Zhang P, Zhai C, Wang X, Liu C, Jiang J, Xue Y (2013) Growth competition between Microcystis aeruginosa and Quadrigula chodatii under controlled conditions. J Appl Phycol 25:555–565

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from São Paulo Research Foundation (FAPESP—2011/50840-0 and 2013/11306-3 to M.A. Chia) and Brazilian National Research Council (CNPq—301739/2011-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria do Carmo Bittencourt-Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bittencourt-Oliveira, M.C., Chia, M.A., de Oliveira, H.S.B. et al. Allelopathic interactions between microcystin-producing and non-microcystin-producing cyanobacteria and green microalgae: implications for microcystins production. J Appl Phycol 27, 275–284 (2015). https://doi.org/10.1007/s10811-014-0326-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0326-2

Keywords

Navigation