Skip to main content
Log in

Testing sustainable management in Northern Chile: harvesting Macrocystis pyrifera (Phaeophyceae, Laminariales). A case study

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Kelp harvesting in northern Chile is managed by local fishermen and is part of an organized industry. However, the lack of standardized harvesting protocols has made regulation difficult. This, in combination with the impacts of oceanographic disturbances has resulted in some kelp populations being considerably reduced during the last decade. Consequently, harvest methods that maintain kelp resources are sorely needed if harvesting is to remain a viable industry in Chile. Here, experiments were done to identify sustainable methods for harvesting Macrocystis pyrifera along the coast of northern Chile. Three methods were compared with regard to their impacts on kelp populations; one that involves extracting half of the fronds from each individual in a population, one that involves extracting all the fronds from half of the individuals in a population, and a third that involves extracting all the fronds from all of the individuals in a population (i.e., the method currently used). Following this, populations were evaluated over a 2-month period to monitor re-growth of the remaining individuals and recruitment of new individuals, as well as changes in understory algal diversity and herbivore abundance. Our results indicate that removing half of the fronds from each individual in a population was the best method for maintaining the resource for future harvest because, it (1) maintains rapid growth of new fronds on the harvested individuals, (2) promotes recruitment of new individuals, and (3) reduces herbivore densities through physical abrasion. Consequently, this method is recommended for future harvesting of M. pyrifera in Northern Chile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barilotti CD, McPeak RH (1985) Experimental studies on the effects of commercial kelp harvesting in central and southern California Macrocystis pyrifera kelp beds. Calif Fish Game 71:4–20

    Google Scholar 

  • Barilotti CD, Zertuche-Gonzalez JA (1990) Ecological effects of seaweed harvesting in the Gulf of California and Pacific Ocean off Baja California and California. Hydrobiologia 204/205:35–40

    Article  Google Scholar 

  • Bodkin JL (1988) Effects of kelp forest removal on associated fish assemblages in Central California. J Exp Mar Biol Ecol 117:227–238

    Article  Google Scholar 

  • Buschmann AH, Vásquez JA, Osorio P, Reyes E, Filun L, Hernandez-Gonzalez MC, Vega A (2004) The effect of water movement, temperature and salinity on abundance and reproductive patterns of Macrocystis spp. (Phaeophyta) at different latitudes in Chile. Mar Biol 145:849–862

    Article  Google Scholar 

  • Buschmann AH, Moreno C, Vásquez JA, Hernández-Gonzalez MC (2006) Reproduction strategies of Macrocystis pyrifera (Phaeophyta) in Southern Chile: the importance of population dynamics. J Appl Phycol 18:575–582

    Article  Google Scholar 

  • Buschmann AH, Hernandez-Gonzalez MD, Varela D (2008) Seaweed future cultivation in Chile: perspectives and challenges. Int J Environ Pollut 33:432–456

    Article  CAS  Google Scholar 

  • Carney LT, Edwards MS (2010) Role of nutrient fluctuations and delayed development in gametophyte reproduction by Macrocystis pyrifera (Phaeophyceae) in Southern California. J Phycol 46:987–996

    Article  Google Scholar 

  • Casas-Valdez M, Serviere Zaragoza E, Lluch Belda RM, Aguila-Ramirez R (2003) Effect of climate change on the harvest of the kelp Macrocystis pyrifera on the Mexican Pacific coast. Bull Mar Sci 73:545–556

    Google Scholar 

  • Castilla JC, Moreno CA (1982) Sea urchins and Macrocystis pyrifera: an experimental test of their relations in southern Chile. In: Lawrence JM (ed) International echinoderm conference. A.A Balkema, Rotterdam, pp 257–263

    Google Scholar 

  • Dayton KP (1985a) Ecology of kelp communities. Ann Rev Ecol Syst 16:215–245

    Article  Google Scholar 

  • Dayton KP (1985b) The structure and regulation of some South American kelp communities. Ecol Monogr 55:447–468

    Article  Google Scholar 

  • Dayton PK, Tegner MJ (1984) Catastrophic storms and patch stability in a southern California kelp community. Science 224:283–285

    Article  PubMed  CAS  Google Scholar 

  • Anuario Estadistico de Pesca (1985–2006) Servicio Nacional de Pesca. Ministerio de Economía Fomento y Reconstrucción, Santiago

  • Demes K, Graham MH, Suskiewicz T (2009) Phenotypical plasticity reconciles incongruous molecular and morphological taxonomies: giant kelp, Macrocystis (Laminariales, Phaeophyceae), is a monospecific genus. J Phycol 45:1266–1269

    Article  Google Scholar 

  • Druehl LD, Kemp L (1982) Morphological and growth responses f geographically isolated Macrocystis integrifolia populations when grown in a common environment. Can J Bot 60:1409–1413

    Article  Google Scholar 

  • Druehl LD, Wheeler WN (1986) Population biology of Macrocystis integrifolia from British Columbia, Canada. Mar Biol 90:173–179

    Article  Google Scholar 

  • Duggins DO, Simenstad CA, Estes JA (1989) Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science 245:170–173

    Article  PubMed  CAS  Google Scholar 

  • Edwards MS (2000) The role of alternate life-history stages of a marine macroalga: a seed bank analogue? Ecology 81:2404–2415

    Article  Google Scholar 

  • Estes JE, Norman SS, Palmisano SJF (1978) Sea otter predation and community organization in the Western Aleutian Islands, Alaska. Ecology 59:822–933

    Article  Google Scholar 

  • Estevez AR, Sotomayor DA, Poole AK, Pizarro C (2010) Creating a new cadre of academics capable of integrating socio-ecological approach to conservation biology. Rev Chil Hist Nat 83:17–25

    Article  Google Scholar 

  • Fariña JM, Palma AT, Ojeda FP (2005) Subtidal kelp-associated communities off the temperate Chilean coast. In: McClanahan T (ed) Food webs and the dynamic of marine benthic ecosystems. Oxford University Press, New York, pp 79–102

    Google Scholar 

  • Flores-Aguilar RA, Gutiérrez A, Ellwanger A, Searcy-Bernal R (2007) Development and current status of abalone aquaculture in Chile. J Shellfish Res 26:705–711

    Article  Google Scholar 

  • Foster MS, Barilotti DC (1990) An approach to determining the ecological effects of seaweed harvesting: a summary. Proc Int Seaweed Symp 13:15–16

    Google Scholar 

  • Graham MH, Vásquez JA, Buschmann AH (2007) Global ecology of the giant kelp Macrocystis: from ecotypes to ecosystems. Oceanogr Mar Biol 45:39–88

    Google Scholar 

  • Hughes BB (2010) Variable effect of kelp foundation species on rocky intertidal diversity and species interactions in central California. J Exp Mar Biol Ecol 393:90–99

    Article  Google Scholar 

  • Johnson CR, Mann KH (1988) Diversity, patterns of adaptation and stability of Nova Scotian kelp beds. Ecol Monogr 58:129–154

    Article  Google Scholar 

  • Kelco (1976) Algin hydrophilic derivatives of alginic acid for scientific water control. Kelco Division of Merck, San Diego

    Google Scholar 

  • Kennelly SJ (1989) Effect of kelp canopies on understory species due to shade and scour. Mar Ecol Prog Ser 50:215–224

    Article  Google Scholar 

  • Kirkman H, Kendrick GA (1997) Ecological significance and commercial harvesting of drifting and beach-cast macro-algae and seagrasses in Australia: a review. J Appl Phycol 9:311–326

    Article  Google Scholar 

  • Konar B (2000) Seasonal inhibitory effects of marine plants on sea urchins: structuring communities the algal way. Oecologia 125:208–217

    Article  Google Scholar 

  • Lawrence JM (1975) On the relationship between marine plants and sea urchins. Oceanogr Mar Biol Ann Rev 13:213–286

    Google Scholar 

  • Lobban CS (1978a) The growth and death of Macrocystis sporophytes (Phaeophyceae, Laminariales). Phycologia 17:196–212

    Article  Google Scholar 

  • Lobban CS (1978b) Growth of Macrocystis integrifolia in Barkley sound, Vancouver Island. B C Can J Bot 56:2707–2711

    Article  Google Scholar 

  • Mann KJ (1977) Destruction of kelp-beds by sea urchins. A cyclical phenomenon or irreversible degradation? Helgolander Wiss Meeresunters 33:455–467

    Article  Google Scholar 

  • McCleneghan K, Houk JL (1985) The effects of canopy removal on holdfast growth in Macrocystis pyrifera (Phaephyta; Laminariales). Calif Fish Game 71:21–27

    Google Scholar 

  • North WJ (1971) The biology of giant kelp beds (Macrocystis) in California (North, W. ed) Lehre, Germany; Verlag Von J. Cramer 1–96

  • Reed DC, Amsler CD, Ebeling AW (1992) Dispersal in kelps: factors affecting spore swimming and competency. Ecology 73:1577–1585

    Article  Google Scholar 

  • Reyes-Tisnado R, Hernandez-Carmona G, Rodriguez-Montesino E, Arvizu Higuera DL, Lopez-Gutierrez F (2005) Food grade alginates extracted from the giant kelp Macrocystis pyrifera at pilot-plant scale. Rev Invest Mar 26:185–192

    Google Scholar 

  • Romo H, Alveal K, Avila M (1984) El efecto de la poda en sobrevivencia, tamaño y rendimiento de Macrocystis pyrifera (Lessoniaceae) de Isla Navarino, Chile. Gayana Bot 41:127–135

    Google Scholar 

  • Rothman MD, Anderson RJ, Smit AJ (2006) The effects of harvesting of the south African Kelp (Ecklonia maxima) on kelp population structure, growth rate and recruitment. J Appl Phycol 18:335–341

    Article  Google Scholar 

  • Santelices B (1989) Algas marinas de Chile. Distribución, ecología utilización y diversidad. Ediciones Universidad Católica de Chile, Santiago de Chile

    Google Scholar 

  • Santelices B (1990) Patterns of organizations of intertidal and shollow subtital vegetation in wave exposed habitats of central Chile. Hydrobiologia 192:33–57

    Article  Google Scholar 

  • Santelices B, Ojeda FP (1984) Effect of canopy removal on the understory algal community structure of coastal forests of Macrocystis pyrifera from southern South America. Mar Ecol Prog Ser 14:165–173

    Article  Google Scholar 

  • Schiel DR, Foster MS (1986) The structure of subtidal algal stands in temperate waters. Oceanogr Mar Biol Annu Rev 24:265–307

    Google Scholar 

  • Schiel DR, Nelson WA (1990) The harvesting of macroalgae in New Zealand. Hydrobiologia 204/205:25–33

    Article  Google Scholar 

  • Skjåk-Bræk G, Martinsen A (1991a) Uses and potentials. In: Guiry MD, Blunden G (eds) Seaweed resources in Europe: uses and potentials. Wiley, New York, pp 259–308

    Google Scholar 

  • Skjåk-Bræk G, Martinsen A (1991b) Application of some algal polysaccharides in biotechnology. In: Guiry MD, Blunden G (eds) Seaweed resources in Europe: uses and potentials. Wiley, New York, pp 219–257

    Google Scholar 

  • Taylor DI, Schiel DR (2005) Self-replacement and community modification by the southern bull kelp Durvillaea antarctica. Mar Ecol Prog Ser 288:87–102

    Article  Google Scholar 

  • Vásquez JA (1989) Estructura y organizacion de huirales submareales de Lessonia trabeculata. Dissertation, Universidad de Chile

  • Vásquez JA (1992) Lessonia trabeculata a subtidal bottom kelp in northern Chile: a case of study for a structural and geographical comparison. In: Seeliger U (ed) Coastal plants of Latin America. Academic Press Inc., San Diego, pp 77–89

    Google Scholar 

  • Vásquez JA (1993) Abundance, distributional patterns and diets of main herbivorous and carnivorous species associated to Lessonia trabeculata kelp beds in Northern Chile. Serie Ocasion Univ Católica del Norte 2:213–229

    Google Scholar 

  • Vásquez JA (1995) Ecological effect of brown seaweeds harvesting. Bot Mar 38:251–257

    Article  Google Scholar 

  • Vásquez JA (2008) Production, use and fate of Chilean brown seaweeds: resources for a sustainable fishery. J Appl Phycol 20:457–467

    Article  Google Scholar 

  • Vásquez JA, Buschmann AH (1997) Herbivore-kelp interactions in Chilean subtidal communities: a review. Rev Chil Hist Nat 70:41–52

    Google Scholar 

  • Vásquez JA, McPeak RH (1998) A new tool for kelp restoration. Calif Fish Game 84:149–158

    Google Scholar 

  • Vásquez JA, Santelices B (1990) Ecological effects of harvesting Lessonia (Laminariales, Phaeophyta) in central Chile. Hydrobiologia 204/205:41–47

    Article  Google Scholar 

  • Vásquez JA, Westermeier R (1993) Limiting factors in optimizing seaweed yield in Chile. Hydrobiologia 260(261):313–320

    Article  Google Scholar 

  • Vásquez JA, Castilla JC, Santelices B (1984) Distributional patterns and diet of four species of sea urchins in a giant kelp forest (Macrocystis pyrifera) of Puerto Toro, Navarino Island, Chile. Mar Ecol Prog Ser 19:55–63

    Article  Google Scholar 

  • Vega JMA (2005) Dinámica de poblaciones de Macrocystis integrifolia Bory (Laminariales, Phaeophyta) en el norte de Chile. Thesis, Universidad Catolica del Norte

  • Vega JMA, Vásquez JA, Buschmann AH (2005) Biology of the subtidal kelps Macrocystis integrifolia and Lessonia trabeculata (Laminariales, Phaeophyceae) in an upwelling ecosystem of northern Chile: interannual variability and El Nino 1997–98. Rev Chilena Hist 78:33–50

    Google Scholar 

  • Villegas MJ, Laudien J, Sielfeld W, Arntz WE (2008) Macrocystis integrifolia and Lessonia trabeculata (Laminariales; Phaeophyceae) kelp habitat structures and associated macrobenthic community off northern Chile. Helgol Mar Res 62:S33–S43

    Article  Google Scholar 

  • Yabur R, Bashan Y, Hernández-Carmona G (2007) Alginate from the macroalgae Sargassum sinicola as a novel source for microbial inmobilization material in wastewater treatment and plant growth promotion. J App Phycol 19:43–53

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Andres Deza for diving assistance in Chile, and the LABECO from the Universidad Católica del Norte, specially Alonso Vega and Nicole Piaget. We acknowledge the BEER PIGs at San Diego State University for the partial funding and help. Financial support was also given by the National Commission of Sciences and Technology (CONICYT) from Chile under the human capital scholarship for graduate studies. We thank the dive center Memo Ruz for the logistical support and Eduardo Rodriguez for digital help. Finally and most important, we thank the fishermen community of Punta Choros for their support and help specially the Bolbaran's Family: Sole grande, Sole chica, Marina, Tio Dogui and my great friend Josue. This is contribution number XX to SDSU's Coastal and Marine Institute Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Borras-Chavez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borras-Chavez, R., Edwards, M. & Vásquez, J.A. Testing sustainable management in Northern Chile: harvesting Macrocystis pyrifera (Phaeophyceae, Laminariales). A case study. J Appl Phycol 24, 1655–1665 (2012). https://doi.org/10.1007/s10811-012-9829-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9829-x

Keywords

Navigation