Skip to main content

Advertisement

Log in

Rheology and composition of a multi-utility exopolymer from a desert borne cyanobacterium Anabaena variabilis

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The desert cyanobacterium Anabaena variabilis produces an exopolymer during the stationary growth phase in batch culture. Optimal polymer production was observed at pH 10 under phosphorus limitation. Chemical analysis showed it to be composed of 49% carbohydrate and 19% protein. Monosaccharide analysis revealed a heteropolysaccharidic nature with glucose, mannose, and galactose as the main neutral sugars. Infrared (IR) spectrum of the exopolymer showed absorption bands at 1,645 and 1,421 cm−1 characteristic of C=O in the carboxylate group. Strong band was observed at 1,072 cm−1 due to C–O–C or C–O–P stretching vibrations. A band at 2,363 cm−1 corresponding to C–H stretch of protein was also observed. IR spectrum suggested that the exopolymer is nonsulfated. Rheological properties of the polymer showed marked shear thinning non-Newtonian behavior in the concentration range of 0.1–0.4%. However, it appeared to undergo change in the internal structure on shearing thereby exhibiting thixotropic behavior. The polymer possessed 75% flocculating ability vis a vis alum, 71% emulsification of hexadecane, and good thermal stability making it a potent candidate for multiple industrial applications. The exopolymer bound 156 g H2O g−1 and exhibited antibacterial activity against Staphylococcus aureus suggesting a potential for application in wound management as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams DG (2000) Cyanobacterial phylogeny and development: questions and challenges. In: Brun YV, Shimkets LJ (eds) Prokaryotic development. ASM Press, Washington DC, pp 51–81

    Google Scholar 

  • Alcoverro T, Conte E, Mazzella L (2000) Production of mucilage by the adriatic epipelic diatom Cylindrotheca closterium (Bacillariophyceae) under nutrient limitation. J Phycol 36:1087–1095

    Article  CAS  Google Scholar 

  • Atkins EDT (1986) Biomolecular structures of naturally occurring carbohydrate polymers. Int J Biol Macromol 8:323–329

    Article  CAS  Google Scholar 

  • Básaca-Loya A, Burboa MG, Valdez MA, Gámez R, Goycoolea FM, Gutiérrez-Millán LE (2008) Aggregation behavior and rheology of culture broths of Rhodosorus marinus. Rev Mex Fis 54:119–126

    Google Scholar 

  • Blanquet PR (1976) Ultrahistochemical study on the Ruthenium Red surface staining II. Nature and affinity of the electron dense marker. Histochemistry 47:175–189

    Article  PubMed  CAS  Google Scholar 

  • Brown MJ, Lester JN (1980) Comparison of bacterial extracellular polymer extraction methods. Appl Environ Microbiol 40:179–185

    PubMed  CAS  Google Scholar 

  • Carico RD (1976) High concentration polymer slurries. Soc. Pet. Eng AIME SPE No 5870

  • Chen RH, Chen WY (2001) Rheological properties of the water-soluble mucilage of a green laver, Monostroma nitidium. J Appl Phycol 13:481–488

    Article  Google Scholar 

  • Chen L, Li D, Liu Y (2003) Salt tolerance of Microcoleus vaginatus Gom, a cyanobacterium isolated from desert algal crust, was enhanced by exogenous carbohydrates. J Arid Environ 55:645–656

    Article  Google Scholar 

  • Choi CW, Soon-Ae Y, In-Hye O, Park SH (1998) Characterization of an extracellular flocculating substance produced by a planktonic cyanobacterium, Anabaena sp. Biotechnol Lett 20:643–646

    Article  CAS  Google Scholar 

  • de Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22:151–175

    Article  Google Scholar 

  • de Philippis R, Silli C, Tassinato G, Vincenzini M, Materassi R (1991) Effects of growth conditions on exopolysaccharide production by Cyanospira capsulata. Bioresour Technol 38:101–104

    Article  Google Scholar 

  • Desikachary TV (1959) Cyanophyta. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Fernandes HL, Lupi F, Tome MM, Sa-Correia I, Novais JM (1991) Rheological behaviour of the culture medium during growth of the microalga Botryococcus braunii. Bioresour Technol 38:133–136

    Article  CAS  Google Scholar 

  • Figueroa LA, Silverstein JA (1989) Ruthenium red adsorption method for measurement of extracellular polysaccharides in sludge flocs. Biotechnol Bioeng 33:941–947

    Article  PubMed  CAS  Google Scholar 

  • Hebber P, Gueniot B, Heyraud A, Heulin T, Rinauds M (1992) Characterization of exopolysaccharides produced by bacteria isolated from plant roots. Appl Microbiol Biotechnol 38:248–253

    Google Scholar 

  • Iqbal A, Bhatti HN, Nosheen S, Jamil A, Malik MA (2002) Histochemical and physicochemical study of bacterial exopolysaccharides. Biotechnology 1:28–33

    Article  Google Scholar 

  • Kenis PR (1971) Turbulent flow friction reduction effectiveness and hydrodynamic degradation of polysaccharides and synthetic polymers. J Appl Polym Sci 15:607–618

    Article  CAS  Google Scholar 

  • Kroen WK, Rayburn WR (1984) Influence of growth status and nutrients on extracellular polysaccharide synthesis by the soil alga Chlamydomonas mexicana (Chlorophyceae). J Phycol 20:253–257

    Article  CAS  Google Scholar 

  • Kurane R, Takeda K, Suzuki T (1986) Screening for characteristics of microbial flocculants. Agric Biol Chem 50:2301–2307

    Article  CAS  Google Scholar 

  • Lapasin R, Pricl S, Bertocchi C, Navarini L, Cesàro A, De Philippis R (1992) Rheology of culture broths and exopolysaccharide of Cyanospira capsulata at different stages of growth. Carbohydr Polym 17:1–10

    Article  Google Scholar 

  • Li P, Harding SE, Liu ZH (2001) Cyanobacterial exopolysaccharides: their nature and potential biotechnological applications. Biotechnol Gen Eng Rev 18:375–404

    CAS  Google Scholar 

  • Liu H, Buskey EJ (2000) Hypersalinity enhances the production of extracellular polymeric substances (EPS) in the Texas Brown Tide Alga, Aureoumbra lagunensis (Pelagophyceae). J Phycol 36:71–77

    Article  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Iarr AL, Randall RI (1951) Protein measurement with folin–phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Martinez J (2003) Rheological properties of vinyl polysiloxane impression pastes. Dent Mater 17(6):471–476

    Article  Google Scholar 

  • Moreno J, Vargas MA, Madiedo JM, Munoz J, Rivas J, Guerrero G (2000) Chemical and rheological properties of an extracellular polysaccharide produced by the cyanobacterium Anabaena sp. ATCC 33047. Biotechnol Bioeng 67:283–290

    Article  PubMed  CAS  Google Scholar 

  • Myklestad SM (1995) Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Sci Total Environ 165:155–164

    Article  CAS  Google Scholar 

  • Overdahl BJ, Zottola EA (1991) Relationship between bile tolerance and the presence of a ruthenium red staining layer on strains of Lactobacillus acidophilus. J Dairy Sci 74:1196–1200

    Article  PubMed  CAS  Google Scholar 

  • Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941

    Article  PubMed  CAS  Google Scholar 

  • Porra RJ, Thompson WA, Kriedman DE (1989) Determination of accurate extinction coefficient and simultaneous equation for assaying chlorophyll a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Roe JH (1955) The determination of sugar in blood and spinal fluid with anthrone reagent. J Biol Chem 212:335–343

    PubMed  CAS  Google Scholar 

  • Saxena S, Kaushik BD (1992) Polysaccharide (biopolymers) from halotolerant cyanobacteria. Indian J Exp Biol 3:433–434

    Google Scholar 

  • Stanier RV, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue–green algae (order: Chrococcales). Bacteriol Rev 35:171–205

    PubMed  CAS  Google Scholar 

  • Sutherland IW (1994) Structure–function relationships in microbial exopolysachharides. Biotechnol Adv 12:393–448

    Article  PubMed  CAS  Google Scholar 

  • Tease BE, Walker RW (1987) Comparative composition of the sheath of the cyanobacterium Gloeothece ATCC 27152 cultured with and without combined nitrogen. J Gen Microbiol 133:3331–3339

    CAS  Google Scholar 

  • Thepenier C, Gudin C (1985) Studies on optimal conditions for polysaccharide production by Porphyridium cruentum. World J Microbiol Biotechnol 1:257–268

    Article  CAS  Google Scholar 

  • Triantafillopoulos N (1988) Measurement of fluid rheology and interpretation of rheograms. 2/e. Kaltec Scientific, Inc., Michigan, USA

  • Venezia SN, Zosim GA, Legmann R, Carmeli S, Ron EZ, Rosenberg E (1995) Alasan, a new bioemulsifier from Acinetobactor radioresistens. Appl Environ Microbiol 61:3240–3244

    Google Scholar 

  • Waller LN, Fox N, Fox KF, Fox A, Price RL (2004) Ruthenium red staining for ultrastructural visualization of a glycoprotein layer surrounding the spore of Bacillus anthracis and Bacillus subtilis. J Microbiol Meth 58:23–30

    Article  CAS  Google Scholar 

  • York WS, Darvill AG, McNeil M, Stevenson TT, Albersheim P (1985) Quantitative monosaccharide analysis. Methods Enzymol 118:3–40

    Article  Google Scholar 

  • Zhang J, Wang R, Jiang P, Liu Z (2002) Production of an exopolysaccharide bioflocculant by Sorangium cellulosum. Lett Appl Microbiol 34:178–181

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bhatnagar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatnagar, M., Pareek, S., Ganguly, J. et al. Rheology and composition of a multi-utility exopolymer from a desert borne cyanobacterium Anabaena variabilis . J Appl Phycol 24, 1387–1394 (2012). https://doi.org/10.1007/s10811-012-9791-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9791-7

Keywords

Navigation