Skip to main content
Log in

Spatial and temporal variations of Chondrus crispus (Gigartinaceae, Rhodophyta) carrageenan content in natural populations from Galicia (NW Spain)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Qualitative and quantitative differences in carrageenan composition of gametophytes and tetrasporophytes of Chondrus crispus were observed in this study. Carrageenans in gametophytes belong to the kappa family (κ-, ι-, ν- and μ-carrageenan). The dominant fractions were κ- and ι-carrageenan (more than 50% of the total carrageenans). In tetrasporophytes, the presence of λ-carrageenan was confirmed. Carrageenan content in gametophytes (37.4 ± 1.68% DW) was higher than in tetrasporophytes (29.13 ± 0.76% DW). Spatial and temporal variation in carrageenan content in both life cycle phases appears to be related mainly to seawater and air temperatures, insolation, water movement and desiccation. The highest values of carrageenan content were recorded in those localities where higher values of precipitation, wind speed or water movement occurred. A bimodal temporal pattern on carrageenan content was observed. Fronds showed a high carrageenan content in spring and autumn. During these seasons, the content was over 40% in gametophytes and 30% in the tetrasporophytes. In summer and winter, these values down in both life cycle phases below 30%. In general the highest carrageenan contents were related to highest seawater temperatures. On the contrary, high air temperature and high insolation appeared to be unfavourable for carrageenan production. GLM models were obtained to predict carrageenan production from natural C. crispus populations, along Galician coast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bixler HJ, Porse H (2011) A decade of change in the seaweed hydrocolloids industry. J App Phycol 23:321–335

    Article  Google Scholar 

  • Black WAP, Blakemore WR, Colquhoun JA, Dewar ET (1965) The evaluation of some marine red algae as a source of carrageenan and of its κ- and λ-component. J Sci Food Agric 16:573–585

    Article  PubMed  CAS  Google Scholar 

  • Campo VL, Kawano DF, da Silva DB, Carvalho I (2009) Carrageenans: biological properties, chemical modifications and structural analysis—a review. Carbohydr Polym 77:167–180

    Article  CAS  Google Scholar 

  • Carrington E, Grace SP, Chopin T (2001) Life history phase and the biomechanical properties of the red alga Chondrus crispus (Rhodophyta). J Phycol 37:699–704

    Article  Google Scholar 

  • Chen LCM, McLachlan J, Neish AC, Shacklock PF (1973) The ratio of kappa-to-lambda-carrageenan in nuclear phases of the rhodophycean algae Chondrus crispus and Gigartina stellata. J Mar Biol Assoc UK 53:11–16

    Article  CAS  Google Scholar 

  • Chopin T (1985) Variations saisonnières de la nutrition phosphorée des carraghénanes et de croissance chez deux formes de l’Algue rouge Chondrus crispus Stackhouse. Thèse de doctorat de 3ème cycle, Université de Brest, France

  • Chopin T (1986) The red alga Chondrus crispus Stackhouse (Irish moss) and carrageenans. A review. Can Tech Rep Fish Aquat Sci 1514:69

    Google Scholar 

  • Chopin T, Floc'h HJY (1987) Seasonal variations of growth in the red alga Chondrus crispus on the Atlantic French coast. I. A new approach by fluorescence labelling. Can J Bot 65:1014–1018

    Article  Google Scholar 

  • Chopin T, Wagey T (1999) Factorial study of the effects of phosphorus and nitrogen enrichments on nutrient and carrageenan content in Chondrus crispus (Rhodophyceae) and on residual nutrient concentration in seawater. Bot Mar 42:23–31

    Article  CAS  Google Scholar 

  • Chopin T, Bodeau-Bellion C, Floc’h JY, Guittet E, Lallemand JY (1987) Seasonal study of carrageenan structures from female gametophytes of Chondrus crispus Stackhouse (Rhodophyta). Hydrobiologia 151/152:535–539

    Article  Google Scholar 

  • Chopin T, Hanisak MD, Koehn FE (1991) Effects of seawater phosphorus concentration on floridean starch content in Agardhiella subulata (C. Agardh) Kraft et Wynne (Rhodophyceae). Bot Mar 34:369–373

    Article  CAS  Google Scholar 

  • Correa-Diaz F, Aguilar-Rosas R, Aguilar-Rosas L (1990) Infrared analysis of eleven carragenophytes from Baja California, Mexico. Hydrobiologia 204/205:609–614

    Article  Google Scholar 

  • Dawes CJ, Lawrence JM, Cheney DP, Mathieson AC (1974) Ecological studies of floridian Eucheuma (Rhodophyta, Gigartinales). III. Seasonal variation of carrageenan, total carbohydrate, protein, and lipid. Bull Mar Sci 2:286–299

    Google Scholar 

  • Durako MJ, Dawes CJ (1980) A comparative seasonal study of two populations of H. musciformis from the east and west coasts of Florida, USA. I. Growth and chemistry. Mar Biol 59:151–156

    Article  CAS  Google Scholar 

  • Faraway JJ (2004) Linear models with R. Chapman and Hall/CRC, Boca Raton, p 225

    Google Scholar 

  • Fogg GE (1964) Environmental conditions and the pattern of metabolism in algae. In: Jackson D (ed) Algae and man. Plenum, New York, pp 77–85

    Chapter  Google Scholar 

  • Fuller SW, Mathieson AC (1972) Ecological studies of economic red algae. IV. Variations of carrageenan concentration properties in Chondrus crispus Stackhouse. J Exp Mar Biol Ecol 10:49–58

    Article  CAS  Google Scholar 

  • Lutwick GD (1973) Seasonal variation of chemical composition of Chondrus crispus. Rep Project 3036 Nova Scotia Research Foundation

  • Mathieson AC, Tveter E (1975) Carrageenan ecology of Chondrus crispus stackhouse. Aquat Bot 1:25–43

    Article  CAS  Google Scholar 

  • McCandless EL, Craigie JS (1974) Reevaluation of seasonal factors involved in carrageenan production by Chondrus crispus: carrageenans of carposporic plants. Bot Mar 17:125–129

    Article  CAS  Google Scholar 

  • McCandless EL, West JA, Guiry MD (1983) Carrageenan patterns in the Gigartinaceae. Biochem Syst Ecol 11:175–182

    Article  CAS  Google Scholar 

  • McCullagh P, Nelder JA (1983) Generalized linear models. Chapman & Hall, London, p 511

    Google Scholar 

  • McHugh DJ (2003) A guide to the seaweed industry. FAO Fisheries Technical Paper 441:61–72

    Google Scholar 

  • OSPAR Commission (2000) Quality Status Report 2000: Region IV—Bay of Biscay and Iberian Coast. OSPAR Commission, London. p 134 + xiii

  • Percival E, McDowell RH (1967) Chemistry and enzymology of marine algal polysaccharides. London Academic, London, p 219

    Google Scholar 

  • Pereira L, Mesquita JF (2003) Carrageenophytes of occidental Portuguese coast: 1-spectroscopic analysis in eight carrageenophytes from Buarcos Bay. Biomol Eng 20:217–222

    Article  PubMed  CAS  Google Scholar 

  • Pickemere SE, Parsons MJ, Bailey RW (1973) Composition of Gigartina carrageenan in relation to sporophytes and gametophytes stages of the life cycle. Phytochemistry 12:2441–2444

    Article  Google Scholar 

  • Rasilla Álvarez D, García Codrón JC, Garmendia Pedraja C (2002) Los temporales de viento: propuesta metodológica para el análisis de un fenómeno infravalorado. In Cuadrat JM, Vicente SM and Saz MA (eds) La información climática como herramienta de gestión ambiental, Zaragoza University Press, pp. 122–136

  • Rasilla D, García Codron JC, Hernández Gimena A (2004) Las mareas atmosféricas en la costa norte de la Península Ibérica. In García Codron JC, Diego Liaño C, Fernández de Arróyabe Hernáez P, Garmendia Pedraja C, Rasilla Álvarez, D (eds) El Clima entre el Mar y la Montaña, Asociación Española de Climatología y Universidad de Cantabria, Serie A, No. 4, Santander, pp. 135–144

  • Reis RP, Yoneshigue-Valentin Y, Pereira dos Santos C (2008) Spatial and temporal variation of Hypnea musciformis carrageenan (Rhodophyta-Gigartinales) from natural beds in Rio de Janeiro State, Brazil. J Appl Phycol 20:1–8

    Article  Google Scholar 

  • Stortz CA, Bacon BE, Cherniak R, Cerezo AS (1994) High-field NMR, spectroscopy of cystocarpic and tetrasporic carrageenans from Iridaea undulosa. Carbohydr Res 261:317–326

    Article  CAS  Google Scholar 

  • Tasende MG, Rodríguez González LM (2003) Economic seaweeds of Galicia (NW Spain). Thalassas 19:17–25

    Google Scholar 

  • Thornber CS (2006) Functional properties of the isomorphic biphasic algal life cycle. Integr Comp Biol 46:605–614

    Article  PubMed  Google Scholar 

  • Tojo E, Prado J (2003a) A simple 1H NMR method for the quantification of carrageenans in blends. Carbohydr Polym 53:325–329

    Article  CAS  Google Scholar 

  • Tojo E, Prado J (2003b) Chemical composition of carrageenan blends determined by IR spectroscopy combined with a PLS multivariate calibration method. Carbohydr Res 338:1309–1312

    Article  PubMed  CAS  Google Scholar 

  • Usov AI (1984) NMR Spectroscopy of red seaweed polysaccharides: agars, carrageenans and xylans. Bot Mar 27:189–202

    Article  CAS  Google Scholar 

  • Van de Velde C, Knutsen SH, Usov AI, Rollema HS, Cerezo AS (2002) 1H and 13 C high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends Food Sci Technol 13:73–92

    Article  Google Scholar 

  • Van de Velde C, Pereira L, Rollema HS (2004) The revised NMR chemical shift data of carrageenans. Carbohydr Res 339:2309–2313

    Article  PubMed  Google Scholar 

  • Waaland JR (1975) Differences in carrageenan in gametophytes and tetrasporophytes of red algae. Phytochemistry 14:1359–1362

    Article  CAS  Google Scholar 

  • Yermak IM, Kim YH, Titlyanov EA, Isakov VV, Solov’eva T (1999) Chemical structure and gel properties of carrageenans from algae beloning to the Gigartinaceae and Tichocarpaceae collected from the Russian Pacific coast. J Appl Phycol 11:41–48

    Article  CAS  Google Scholar 

  • Yermak IM, Barabanova A, Glazunov V, Isakov V, Hwan K, Soon S, Titlynova T, Solov’eva T (2006) Carrageenans from cystocarpic and sterile plants of Chondrus pinnulatus (Gigartinaceae, Rhodophyta) collected from the Russian Pacific coast. J Appl Phycol 18:361–368

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Carrasea Project (www.carrasea.org) of the European programme Aquareg (Interreg III-C). We thank to María Soledad Saborido for her assistance in field and laboratory work and to Christine Francis for help in revising the English. We also thank to M. Doval and Y. Pazos (Intecmar, Xunta de Galicia) for providing us the oceanographic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel García Tasende.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García Tasende, M., Cid, M. & Fraga, M.I. Spatial and temporal variations of Chondrus crispus (Gigartinaceae, Rhodophyta) carrageenan content in natural populations from Galicia (NW Spain). J Appl Phycol 24, 941–951 (2012). https://doi.org/10.1007/s10811-011-9715-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-011-9715-y

Keywords

Navigation