Skip to main content
Log in

Photopyroelectric Microscopy of Porous Ceramics

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Porous ceramics has capital importance in a wide variety of applications as in the case of gas and humidity sensors; in these applications an important fact is that the ceramic structure must insure intercommunication between one side and the other. Several techniques has been used in order to have information about the ceramic structure; among these, photopyroelectric (PPE) spectroscopy is an option to be used in porous ceramic structure characterization. In PPE microscopy, an image of the sample thermal response can be obtained by 2D scanning of a focused beam across a surface, which yields localized information on the possible presence of subsurface features which is an important property of porous ceramics. Recently porous ceramics based on barium titanate mixed with silicon dioxide have been developed to be used as gas and humidity sensors. By the use of PPE microscopy, porous ceramics were analyzed with two different resolutions as a result of the variation of the light modulation frequency. The light modulation frequency is related not only to scanning depth, but also to thermal scale length which gives us the minimum sample length that can be studied and is also related with its thermal diffusion length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguilar-Mendez M.A., Martin-Martinez E.S., Morales J.E., Cruz-Orea A., Jaime-Fonseca M.R.: Anal. Sci. 23, 457 (2007)

    Article  Google Scholar 

  2. Cruz-Orea A., Tomás S.A., Guerrero-Zuñiga A., Rodríguez-Dorantes A.: Int. J. Thermophys. 25, 603 (2004)

    Article  ADS  Google Scholar 

  3. Jiménez Pérez J.L., Cruz-Orea A., Ramon-Gallegos E., Gutierrez Fuentes R., Sanchez Ramirez J.F.: Eur. Phys. J. Spec. Top. 153, 353 (2008)

    Article  Google Scholar 

  4. Quimby R.S.: Appl. Phys. Lett. 45, 1037 (1984)

    Article  ADS  Google Scholar 

  5. Rosencwaig A., White R.M.: Appl. Phys. Lett. 38, 165 (1981)

    Article  ADS  Google Scholar 

  6. Favro L.D., Kuo P.K., Pouch J.J., Thomas R.L.: Appl. Phys. Lett. 36, 953 (1980)

    Article  ADS  Google Scholar 

  7. Gonzalez-Ballesteros R., Cruz-Orea A., Flores-Cuautle J.J.A., Suaste-Gomez E.: Ferroelectrics 396, 98 (2010)

    Article  Google Scholar 

  8. Briseño-Tepepa B., Jiménez-Peréz J., Saavedra R., González-Ballesteros R., Suaste E., Cruz-Orea A.: Int. J. Thermophys. 29, 2200 (2008)

    Article  ADS  Google Scholar 

  9. Nagai M., Nishino T., Saeki T.: Sens. Actuators 15, 145 (1988)

    Article  Google Scholar 

  10. Narayan R., Colombo P.: Advances in Bioceramics and Porous Ceramics. Wiley, Weinheim (2009)

    Book  Google Scholar 

  11. Saito S., Miyayama M., Koumoto K., Yanagida H.: J. Am. Ceram. Soc. 68, 40 (1985)

    Article  Google Scholar 

  12. J.J.A. Flores Cuautle, M. Acuautla Meneses, E. Suaste Gomez, Presented at the International Materials Research Congress, Cancun, Mexico, 2009 (unpublished)

  13. Acuautla-Meneses M.I., Flores-Cuautle J.J.A., Suaste-Gómez E.: Ferroelectrics 423, 111 (2011)

    Article  Google Scholar 

  14. Rice R.W.: Porosity of Ceramics. Marcel Dekker, New York (1998)

    Google Scholar 

  15. Moulson A.J., Herbert J.M.: Electroceramics. Wiley, New York (2003)

    Book  Google Scholar 

  16. Kingery W.D., Bowen H.K., Uhlmann D.R.: Introduction to Ceramics. Wiley, New York (1976)

    Google Scholar 

  17. Rosencwaig A., Busse G.: Appl. Phys. Lett. 36, 725 (1980)

    Article  ADS  Google Scholar 

  18. George S.D., Komban R., Warrier K.G.K., Radhakrishnan P., Nampoori V.P.N., Vallabhan C.P.G.: Philos. Mag. 90, 717 (2010)

    Article  ADS  Google Scholar 

  19. Sánchez-Lavega A., Salazar A., Ocariz A., Pottier L., Gomez E., Villar L.M., Macho E.: Appl. Phys. A, Mater. Sci. Proc. 65, 15 (1997)

    Article  ADS  Google Scholar 

  20. George S., Komban R., Warrier K., Radhakrishnan P., Nampoor V., Vallabhan C.: Int. J. Thermophys. 28, 123 (2007)

    Article  ADS  Google Scholar 

  21. D.M. Todorovic, D. Valiljevis-Radovic, A.I. Bojicic, V.B. Pavlovic, B.D. Stojanovic, M.M. Ristic, in Proceedings of 10th International Conference on Photoacoustic and Photothermal Phenomena, ed. by F. Scudieri, M. Bertolotti, AIP Conf. Proc. 463, Rome (1999), pp. 348–350

  22. Calderón A., Alvarado-Gil J.J., Gurevich Y.G., Cruz-Orea A., Delgadillo I., Vargas H., Miranda L.C.M.: Phys. Rev. Lett. 79, 5022 (1997)

    Article  ADS  Google Scholar 

  23. Touloukian Y.S.: Thermophysical Properties of Matter. Springer, New York (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. A. Flores-Cuautle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flores-Cuautle, J.J.A., Cruz-Orea, A. & Suaste-Gomez, E. Photopyroelectric Microscopy of Porous Ceramics. Int J Thermophys 33, 2139–2144 (2012). https://doi.org/10.1007/s10765-012-1300-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1300-3

Keywords

Navigation