Skip to main content
Log in

“Dark” Excited States of Diphenylacetylene Studied by Nonresonant Two-Photon Excitation Optical-Probing Photoacoustic Spectroscopy

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Optical probing photoacoustic spectroscopy (OPPAS), a photothermal calorimetric technique, was applied to investigate one-photon forbidden “dark” electronically excited singlet states of diphenylacetylene (DPA), belonging to the D 2h point group. When 502 nm light from a pulsed OPO laser was focused into a DPA hexane solution, an acoustic wave was detected as a transient angular deflection of the probe beam (He–Ne laser). The laser power dependence of the OPPAS signal was estimated to be 1.9 ± 0.2, suggesting two-photon absorption for acoustic generation. With the OPPAS technique, we successfully obtained a nonresonant two-photon absorption spectrum of DPA in solution for the first time. The two-photon allowed 11 B 3g and 21 A g states were found to be above the one-photon allowed 11 B 1u state. These results show that OPPAS is a highly sensitive technique applicable to two-photon absorption spectral measurements of nonfluorescent species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Devadoss C., Bharathi P., Moore S.: J. Am. Chem. Soc. 118, 9635 (1996)

    Article  Google Scholar 

  2. Shortreed M.R., Swallen S.F., Shi Z.-Y., Tan W., Xu Z., Devadoss C., Moore J.S., Kopelman R.: J. Phys. Chem. B 101, 6318 (1997)

    Article  Google Scholar 

  3. Melinger J.S., Pan Y., Kleiman V.D., Peng Z., Davis B.L., McMorrow D., Lu M.: J. Am. Chem. Soc. 124, 12002 (2002)

    Article  Google Scholar 

  4. Swager T.M.: Acc. Chem. Res. 31, 201 (1998)

    Article  Google Scholar 

  5. Chen J., Reed M.A., Rawlett A.M., Tour J.M.: Science 286, 1550 (1999)

    Article  Google Scholar 

  6. Ambroise A., Kirmair C., Wanger R.W., Loewe R.S., Bocian D.F., Holten D., Lindsey J.S.: J. Org. Chem. 67, 3811 (2002)

    Article  Google Scholar 

  7. Holten D., Bocian D.F., Lindsey J.S.: Acc. Chem. Res. 25, 57 (2002)

    Article  Google Scholar 

  8. Audebert P., Kamada K., Matsunaga K., Ohta K.: Chem. Phys. Lett. 367, 62 (2003)

    Article  ADS  Google Scholar 

  9. Slepkov A.D., Hegmann F.A., Tykwinski R.R., Kamada K., Ohta K., Marsden J.A., Spitler E.L., Miller J.J., Haley M.M.: Opt. Lett. 31, 3315 (2006)

    Article  ADS  Google Scholar 

  10. Kamada K., Ohta K., Iwase Y., Kondo K.: Chem. Phys. Lett. 372, 386 (2003)

    Article  ADS  Google Scholar 

  11. Ohta K., Kamada K.: J. Chem. Phys. 124, 124303 (2006)

    Article  ADS  Google Scholar 

  12. Okuyama K., Hasegawa T., Ito M., Mikami N.: J. Phys. Chem. 88, 1711 (1984)

    Article  Google Scholar 

  13. Borst D.R., Chou S.G., Pratt D.W.: Chem. Phys. Lett. 343, 28 (2001)

    Article  Google Scholar 

  14. Hirata Y., Okada T., Mataga N.: J. Phys. Chem. 96, 6559 (1992)

    Article  Google Scholar 

  15. Hirata Y., Okada T.: Chem. Phys. Lett. 209, 397 (1993)

    Article  ADS  Google Scholar 

  16. Hirata Y., Okada T., Nomoto T.: Chem. Phys. Lett. 293, 371 (1998)

    Article  ADS  Google Scholar 

  17. Hirata Y.: Bull. Chem. Soc. Jpn. 72, 1647 (1999)

    Article  Google Scholar 

  18. Ishibashi T., Hamaguchi H.: J. Phys. Chem. A 102, 2263 (1998)

    Article  Google Scholar 

  19. Ishibashi T., Okamoto H., Hamaguchi H.: Chem. Phys. Lett. 325, 212 (2000)

    Article  ADS  Google Scholar 

  20. Nomoto T., Ishibashi T., Okamoto H., Hamaguchi H.: J. Mol. Struct. 735(736), 197 (2005)

    Article  ADS  Google Scholar 

  21. Nagano Y., Ikoma T., Akiyama K., Tero-Kubota S.: J. Phys. Chem. A 102, 5769 (1998)

    Article  Google Scholar 

  22. Nagano Y., Ikoma T., Akiyama K., Tero-Kubota S.: Chem. Phys. Lett. 303, 201 (1999)

    Article  ADS  Google Scholar 

  23. Nagano Y., Ikoma T., Akiyama K., Tero-Kubota S.: J. Chem. Phys. 114, 1775 (2001)

    Article  ADS  Google Scholar 

  24. Nagano Y., Ikoma T., Akiyama K., Tero-Kubota S.: J. Am. Chem. Soc. 125, 14103 (2003)

    Article  Google Scholar 

  25. Ferrante C., Kensy U., Dick B.: J. Phys. Chem. 97, 13457 (1993)

    Article  Google Scholar 

  26. Gutmann M., Gudipati M., Schronzart P.-F., Hohlneicher G.: J. Phys. Chem. 96, 2433 (1992)

    Article  Google Scholar 

  27. Göller A., Klemm E., Egbe D.A.M.: Int. J. Quantum Chem. 84, 86 (2001)

    Article  Google Scholar 

  28. Zgierski M.Z., Lim E.C.: Chem. Phys. Lett. 387, 352 (2004)

    Article  ADS  Google Scholar 

  29. Li Y., Zhao J., Yin X., Liu H., Yin G.: Phys. Chem. Chem. Phys. 9, 1186 (2007)

    Article  Google Scholar 

  30. Arnbjerg J., Johnsen M., Frederiksen P.K., Braslavsky S.E., Ogilby P.R.: J. Phys. Chem. A 110, 7375 (2006)

    Article  Google Scholar 

  31. Marcano A., Williams K., Melikechi N.: Opt. Commun. 281, 2598 (2008)

    Article  ADS  Google Scholar 

  32. Tam A.C., Patel C.K.N.: Appl. Opt. 18, 3348 (1979)

    Article  ADS  Google Scholar 

  33. Tam A.C.: Rev. Mod. Phys. 58, 381 (1986)

    Article  ADS  Google Scholar 

  34. Tam A.C., Leung W.P.: Phys. Rev. Lett. 53, 560 (1984)

    Article  ADS  Google Scholar 

  35. Sullivan B., Tam A.C.: J. Acoust. Soc. Am. 75, 437 (1984)

    Article  ADS  Google Scholar 

  36. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, K.N. Staroverov, K.N. Kobayashi, K.N. Normand, K.N. Raghavachari, K.N. Rendell, K.N. Burant, K.N. Iyengar, K.N. Tomasi, K.N. Cossi, K.N. Rega, K.N. Millam, K.N. Klene, K.N. Knox, K.N. Cross, K.N. Bakken, K.N. Adamo, K.N. Jaramillo, K.N. Gomperts, K.N. Stratmann, K.N. Yazyev, K.N. Austin, K.N. Cammi, K.N. Pomelli, K.N. Ochterski, K.N. Martin, K.N. Morokuma, K.N. Zakrzewski, K.N. Voth, K.N. Salvador, K.N. Dannenberg, K.N. Dapprich, K.N. Daniels, K.N. Farkas, K.N. Foresman, K.N. Ortiz, K.N. Cioslowski, K.N. Fox, Gaussian 09, Revision A.2 (Gaussian Inc.,Wallingford, CT, 2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, T., Nakamura, M., Isozaki, T. et al. “Dark” Excited States of Diphenylacetylene Studied by Nonresonant Two-Photon Excitation Optical-Probing Photoacoustic Spectroscopy. Int J Thermophys 33, 2046–2054 (2012). https://doi.org/10.1007/s10765-012-1296-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1296-8

Keywords

Navigation