Skip to main content
Log in

Radiative Properties of Stoichiometric Hafnium, Titanium, and Zirconium Carbides: Thermodynamics of Thermal Radiation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The true temperatures of the thermal radiation of stoichiometric hafnium, titanium, and zirconium carbides are defined from the generalized Wien displacement law. It is shown that Wien’s displacement law for the investigated stoichiometric carbides decreases linearly with increasing temperature. The uncertainties in the determination of the true temperature are no greater than 1 %. For determining the true temperature of stoichiometric carbides, the experimental values of the position of the maximum of the spectral density power are needed. By extrapolating the generalized Wien displacement laws in the ultra-high-temperature region, the positions of the maximum of the normal energy density of hafnium, titanium, and zirconium carbides at melting temperatures are obtained. Thermodynamics of thermal radiation of stoichiometric carbides is constructed by using the temperature dependences of the generalized Stefan–Boltzmann law. The calculated values of the normal total emissivity for the investigated carbides at different temperatures are in good agreement with experimental data. For determining the true temperatures of the thermal radiation of stoichiometric carbides, experimental values of either the normal total emissivity or the normal total energy density are needed. The temperature dependences of the Helmholtz free energy, entropy, heat capacity at constant volume, pressure, enthalpy, and internal energy of the thermal radiation of stoichiometric carbides at high temperature are obtained. It is shown that thermodynamic function values increase with increasing temperature as a power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levine S.R., Opila E.J., Halbig M.C., Kiser J.D., Singh M., Salem J.A.: J. Eur. Ceram. Soc. 22, 2757 (2002)

    Article  Google Scholar 

  2. Samsonov G.V., Paderno V.N.: Zhurnal Prikladnoi Khimii (USSR) 36, 2759 (1963)

    Google Scholar 

  3. Wuchina E., Opila E., Opeka M., Fahrenholtz W., Talmy I.: Interface 16, 30 (2007)

    Google Scholar 

  4. P.T.B. Shaffer, in Engineered Materials Handbook, vol. 4, Ceramics and Glass, ed. by S.J. Schneider (ASM International, Metals Park, OH, 1991), pp. 804–811

  5. Baldinozzi G., Gosset D., Simeone D., Dollé M., Thomé L., Surblé S.: Mater. Res. Soc. Symp. Proc. 1043E, T02–01 (2007)

    Google Scholar 

  6. Sani E., Mercatelli L., Francini F.: J.-L. Sans, D. Sciti, Scr. Mater. 65, 775 (2011)

    Google Scholar 

  7. Agrafiotis C.C., Mavroidis I., Konstandopoulos A.G., Hoffschmidt B., Stobbe P., Romero M., Fernandez-Quero V.: Sol. Energy Mater. Sol. Cells 91, 474 (2007)

    Article  Google Scholar 

  8. Bolgar A.S., Guseva E.A., Fesenko V.V.: Powder Metall. Met. Ceram. 6, 33 (1967)

    Article  Google Scholar 

  9. Turchanin A.G., Guseva E.A., Fesenko V.V.: Powder Metall. Met. Ceram. 12, 215 (1973)

    Article  Google Scholar 

  10. Grossman L.N.: J. Am. Ceram. Soc. 48, 236 (1965)

    Article  Google Scholar 

  11. Touloukian Y.S.: Thermophysical Properties of High Temperatures Solid Materials, vol. 5, pp. 234. The Macmillan Co, New York (1967)

    Google Scholar 

  12. Zapadaeva T.E., Petrov V.A., Sokolov V.V.: High Temp. 19, 313 (1981)

    Google Scholar 

  13. T. Riethof, B. Acchione, E. Branyan, in Temperature, Its Measurement and Control in Science and Industry, vol. 3, ed. by A.I. Dahl (Reinhold Publishing Corporation, New York, 1962), p. 515

  14. Bolgar A.S., Guseva E.A., Fesenko V.V.: Powder Metall. Met. Ceram. 49, 31 (1967)

    Article  Google Scholar 

  15. Zapadaeva T.E., Petrov V.A., Sokolov V.V.: High Temp. 18, 76 (1980)

    Google Scholar 

  16. Ivashov S.N., Fisenko A.I.: Zhurnal Prikladnoi Spectroskopyi 48, 1024 (1988) [in Russian]

    Google Scholar 

  17. Fisenko A.I., Ivashov S.N.: Int. J. Thermophys. 30, 1524 (2009)

    Article  ADS  Google Scholar 

  18. Ivashov S.N., Fisenko A.I.: J. Eng. Phys. 57, 838 (1990)

    Article  Google Scholar 

  19. Fisenko A.I., Ivashov S.N.: J. Phys. D. Appl. Phys. 32, 2882 (1999)

    Article  ADS  Google Scholar 

  20. Ershov V.A., Fisenko A.I.: Combust. Explos. Shock Waves 28, 159 (1992)

    Article  Google Scholar 

  21. Landau L.D., Lifshitz E.M.: Statistical Physics, Course of Theoretical Physics, vol. 5, pp. 484. Pergamon Press, Oxford, NY (1980)

    Google Scholar 

  22. A.K. Kaw, E. Kalu, Numerical Methods with Applications: Customized for University of South Carolina, (autarkaw.com, 2011), p. 594

  23. http://en.wikipedia.org/wiki/Zirconium_carbide; http://en.wikipedia.org/wiki/Hafnium%28IV%29_carbide; http://en.wikipedia.org/wiki/Titanium_carbide. Accessed 2 Sep 2011

  24. Levine S.R., Opila E.J., Halbig M.C., Kiser J.D., Singh M., Salem J.A.: J. Eur. Ceram. Soc. 22, 2757 (2002)

    Article  Google Scholar 

  25. Meng S., Chen H., Hu J., Wang Z.: Mater. Des. 32, 377 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoliy I. Fisenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisenko, A.I., Lemberg, V. Radiative Properties of Stoichiometric Hafnium, Titanium, and Zirconium Carbides: Thermodynamics of Thermal Radiation. Int J Thermophys 33, 513–527 (2012). https://doi.org/10.1007/s10765-012-1160-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1160-x

Keywords

Navigation