Skip to main content
Log in

Uncooled THz/sub-THz Rectifying Detectors: FET vs. SBD

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The parameters (responsivity R and noise equivalent power (NEP)) of long channel unbiased (zero drain-source bias (V DS = 0)) silicon field effect transistors (FET) as THz/sub-THz detectors with account of some parasitics were considered. These parameters and their radiation frequency ν dependences are compared with those of contemporary Schottky barrier diode (SBD) THz/sub-THz detectors. To describe and compare the known experimental data for both of detectors similar models, taking into account the parasitics (some FET or SBD resistances and capacities), were used. It is shown that taking into account the parasitics and detector-antenna impedance matching one can describe Si FET detector parameters and estimate the performance limits of such detectors. The R and NEP radiation frequency ν dependences are similar for FET and SBD detectors and are proportional to ν -2 or to ν -4. The model used for SBD detectors describes well the known experimental data for optical NEP opt but for Si FET ones the sufficient scatter in experimental data is observed. The reason of it seems is mainly due to non-optimized technologies for FETs as detectors for THz/sub-THz radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.I. Dyakonov and M.S. Shur, IEEE Trans Electr Dev 43, 1640 (1996).

    Article  Google Scholar 

  2. A.M. Cowley and H.O. Sorensen, IEEE Trans Microwave Theory Techn 14, 588 (1966).

    Article  Google Scholar 

  3. R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y.M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D.K. Maude, S. Rumyantsev, and M.S. Shur, Appl Phys Lett 89, 253511 (2006).

    Article  Google Scholar 

  4. W. Knap, M. Dyakonov, D. Coquillat, F. Teppe, N. Dyakonova, J. Lusakowski, K. Karpierz, M. Sakowicz, G. Valusis, D. Seliuta, I. Kasalynas, A. Fatimy, Y. M. Meziani, and T. Otsuji, J IR Mm THz Waves 30, 1319 (2009)

    Google Scholar 

  5. S. Preu, S. Kim, R. Verma, P.G. Burke, M.S. Sherwin, and A.C. Gossard, J Appl Phys 111, 024502 (2012).

    Article  Google Scholar 

  6. D.M. Pozar, Microwave Engineering, 4th Ed. (John Wiley & Sons, 2012), p. 752.

  7. E. Ojefors, U.R. Pfeiffer, A. Lisauskas, and H.G. Roskos, IEEE J Sol-St Circ 44, 1968 (2009).

    Article  Google Scholar 

  8. M. Sakowicz, M.B. Lifshits, O. A. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, J Appl Phys 110, 054512 (2011).

    Article  Google Scholar 

  9. Y. Tsividis and C. McAndrew, Operation and Modeling of the MOS Transistor (Oxford University Press, 2011), p. 752.

  10. F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, Opt Express 19, 7827 (2011).

    Article  Google Scholar 

  11. Y. Tsividis, K. Suyama, and K. Vavelidis, Electr Lett 31, 506 (1995).

    Article  Google Scholar 

  12. W. Liu, MOSFET Models for SPICE Simulation, Including BSIM3v3 and BSIM4 (John Wiley & Sons, Inc., 2001).

  13. A. Lisauskas, D. Glaab, H.G. Roskos, E. Oejefors, and U.R. Pfeiffer, Proc SPIE, 7215 , 72150J (2009).

    Article  Google Scholar 

  14. A. Lisauskas, U. Pfeiffer, E. Öjefors, P.H. Bolìvar, D. Glaab, and H.G. Roskos, J Appl Phys 105, 114511 (2009).

    Article  Google Scholar 

  15. W. Knap, V. Kachorovskii, Y. Deng, S. Rumyantsev, J.-Q. Lü, R. Gaska, M.S. Shur, G. Simin, X. Hu, M.A. Khan, C. a. Saylor, and L.C. Brunel, J Appl Phys 91, 9346 (2002).

    Article  Google Scholar 

  16. M. Ratni, B. Huyart, E. Bergeault, and L. Jallet, in 1998 I.E. MTT-S International Microwave Symposium Digest (Cat. No.98CH36192) (IEEE, 1998), pp. 1139–1142.

  17. C. Enz and Y. Cheng, IEEE J Sol-St Circ 35, 186 (2000).

    Article  Google Scholar 

  18. E.R. Brown, Sol-St Electr 48, 2051 (2004).

    Article  Google Scholar 

  19. C. Yu, C. Wu, S. Kshattry, Y. Yun, C. Cha, H. Shichijo, and K.K. O, IEEE J Sol-St Circ 47, 2335 (2012).

  20. R. Han, D. Coquillat, J. Hoy, H. Videlier, W. Knap, E. Brown, and K.K. O, in IEEE Custom Integrated Circuits Conference 2010 (IEEE, 2010), pp. 1–4.

  21. B. Razavi, R.-H. Yan, and K.F. Lee, IEEE Trans Circuits and Systems I: Fundamental Theory and Applications 41, 750 (1994).

    Article  Google Scholar 

  22. C.A. Balanis, Antenna Theory Analysis and Design, 3-d Ed (Wiley, New Jersey, 2005).

  23. H.L. Volakis, Antenna Engineering Handbook, 4-th Ed (McGraw−Hill, New York, 2007).

  24. F. Sizov, A. Golenkov, D. But, M. Sakhno, and V. Reva, Opto-Electr Rev 20, 194 (2012).

    Article  Google Scholar 

  25. A.J.M. Kreisler, Proc. SPIE 666, 51 (1986).

    Article  Google Scholar 

  26. F. Sizov, and A. Rogalski, Progr Quant Electr 34, 278 (2010).

    Article  Google Scholar 

  27. L. Liu, J.L. Hesler, H. Xu, A.W. Lichtenberger, and R.M. Weikle, IEEE Microw Wireless Comp Lett 20, 504 (2010).

    Article  Google Scholar 

  28. P. Chahal, F. Morris, and G. Frazier, IEEE Electr Device Lett 26, 894 (2005).

    Article  Google Scholar 

  29. J.L. Hesler and R.M. Weikle, in 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves (IEEE, 2008), pp. 1–2.

  30. V.G. Bozhkov, Radiophys Quant Electr 46, 631 (2003).

    Article  Google Scholar 

  31. H. Kazemi, G. Nagy, L. Tran, E. Grossman, E.R. Brown, a. C. Gossard, G.D. Boreman, B. Lail, a. C. Young, and J.D. Zimmerman, in 2007 IEEE/MTT-S International Microwave Symposium, pp. 1367–1370.

  32. F. Sizov, V. Zabudsky, A. Golenkov, and A. Shevchik-Shekera, Opt Eng 52, 033203 (2013).

    Article  Google Scholar 

  33. J.L. Hesler and T.W. Crowe, in Proceedings of the Eighteenth International Symposium on Space Terahertz Technology (2007), pp. 89–92.

  34. J.J. Lynch, H.P. Moyer, J.H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y.J. Yoon, and J.N. Schulman, IEEE Trans Microw Theory Techn 56, 1592 (2008).

    Article  Google Scholar 

  35. W. Knap, F. Teppe, Y. Meziani, N. Dyakonova, and J. Lusakowski, F. Boeuf, T. Skotnicki, D. Maude, S. Rumyantsev and M. S. Shur, Appl. Phys. Lett., 85, 675-677 (2004).

    Google Scholar 

  36. W. Knap and M. I. Dyakonov, Field effect transistors for THz applications, in: Handbook of Terahertz Technology for Imaging, Sensing. and Communications, ed.: D. Saeedkia (Woodhead Publishing, 2013), pp. 121–155.

  37. W. Chew and H.R. Fetterman, Int. J. of IR Mm Waves, 10, 565 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sizov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakhno, M., Sizov, F. & Golenkov, A. Uncooled THz/sub-THz Rectifying Detectors: FET vs. SBD. J Infrared Milli Terahz Waves 34, 798–814 (2013). https://doi.org/10.1007/s10762-013-0023-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-013-0023-2

Keywords

Navigation