Skip to main content

Advertisement

Log in

Moringa oleifera Pod Inhibits Inflammatory Mediator Production by Lipopolysaccharide-Stimulated RAW 264.7 Murine Macrophage Cell Lines

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Pro-inflammatory mediators produced during inflammatory response have been demonstrated to initiate and aggravate pathological development of several chronic diseases. Plant bioactive constituents have been reported to exert anti-inflammatory activities. Various parts of Moringa oleifera have long been used as habitual diets and traditional remedy along the tropical region. Anti-inflammatory activity of boiled M. oleifera pod extract was assessed by measuring pro-inflammatory mediator expression in the lipopolysaccharide-induced murine RAW264.7 macrophage cells. Prior treatment with 31–250 μg/mL M. oleifera extract for 1 h inhibited elevation of mRNA and protein level of interleukine-6, tumor necrosis factor-alpha, inducible nitric oxide synthase, and cyclooxygenease-2, induced by lipopolysaccharide for 24 h in a dose-dependent manner. The suppressive effect was mediated partly by inhibiting phosphorylation of inhibitor kappa B protein and mitogen-activated protein kinases. These results indicate that the anti-inflammatory activity from bioactive compounds present in the M. oleifera pod constituents may contribute to ameliorate the pathogenesis of inflammatory-associated chronic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guha, M., and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cellular Signalling 13: 85–94.

    Article  PubMed  CAS  Google Scholar 

  2. Ahn, K., and B. Aggrawal. 2005. Transcription factor NF-{kappa}B: a sensor for smoke and stress signals. Annals of the New York Academy of Science 1056: 218–233.

    Article  CAS  Google Scholar 

  3. Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature 454: 428–435.

    Article  PubMed  CAS  Google Scholar 

  4. Aggarwal, B.B. 2004. Nuclear factor-[kappa]B: the enemy within. Cancer Cell 6: 203–208.

    Article  PubMed  CAS  Google Scholar 

  5. Bengmark, S. 2004. Acute and "chronic" phase reaction—a mother of disease. Clinical Nutrition 23: 1256–1266.

    Article  PubMed  Google Scholar 

  6. FitzGerald, G. 2004. Coxibs and cardiovascular disease. The New England Journal of Medicine 351: 1709–1711.

    Article  PubMed  CAS  Google Scholar 

  7. Gilani, A.H., and R. Atta-ur. 2005. Trends in ethnopharmacology. Journal of Ethnopharmacology 100: 43–49.

    Article  PubMed  Google Scholar 

  8. Block, G., B. Patterson, and A. Subar. 1992. Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutrition and Cancer 18: 1–29.

    Article  PubMed  CAS  Google Scholar 

  9. Reddy, L., B. Odhav, and K.D. Bhoola. 2003. Natural products for cancer prevention: a global perspective. Pharmacology & Therapeutics 99: 1–13.

    Article  CAS  Google Scholar 

  10. Steinmetz, K., and J. Potter. 1996. Vegetables, fruit, and cancer prevention: a review. Journal of the American Dietetic Association 96: 1027–1039.

    Article  PubMed  CAS  Google Scholar 

  11. Kris-Etherton, P.M., K.D. Hecker, A. Bonanome, S.M. Coval, A.E. Binkoski, K.F. Hilpert, A.E. Griel, and T.D. Etherton. 2002. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. The American Journal of Medicine 113: 71–88.

    Article  Google Scholar 

  12. Havsteen, B.H. 2002. The biochemistry and medical significance of the flavonoids. Pharmacology & Therapeutics 96: 67–202.

    Article  CAS  Google Scholar 

  13. Prasad, S., K. Phromnoi, V.R. Yadav, M.M. Chaturvedi, and B.B. Aggarwal. 2010. Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer. Planta Medica 76: 1044–1063.

    Article  PubMed  CAS  Google Scholar 

  14. Punturee, K., C. Wild, and U. Vinitketkumneun. 2004. Thai medicinal plants modulate nitric oxide and tumor necrosis factor-[alpha] in J774.2 mouse macrophages. Journal of Ethnopharmacology 95: 183–189.

    Article  PubMed  Google Scholar 

  15. Tuntipopipat, S., C. Muangnoi, and M.L. Failla. 2009. Anti-inflammatory activities of extracts of Thai spices and herbs with lipopolysaccharide-activated RAW 264.7 murine macrophages. Journal of Medicinal Food 12: 1213–1220.

    Article  PubMed  CAS  Google Scholar 

  16. Sae-wong, C., P. Tansakul, and S. Tewtrakul. 2009. Anti-inflammatory mechanism of Kaempferia parviflora in murine macrophage cells (RAW 264.7) and in experimental animals. Journal of Ethnopharmacology 124: 576–580.

    Article  PubMed  CAS  Google Scholar 

  17. Nanasombat, S., and N. Teckchuen. 2009. Antimicrobial, antioxidant and anticancer activities of Thai local vegetables. Journal of Medicinal Plants Research 3: 443–449.

    Google Scholar 

  18. Ramachandran, C., K.V. Peter, and P.K. Gopalakrishnan. 1980. Drumstick (Moringa oleifera): a multipurpose Indian vegetable. Economic Botany 34: 276–283.

    Article  CAS  Google Scholar 

  19. Soliman, K.F., and E.A. Mazzio. 1998. In vitro attenuation of nitric oxide production in C6 astrocyte cell culture by various dietary compounds. Proceedings of the Society for Experimental Biology and Medicine 218: 390–397.

    PubMed  CAS  Google Scholar 

  20. Morton, J.F. 1991. The horseradish tree, Moringa pterigosperma (Moringaceae). A boon to arid lands. Economic Botany 45: 318–333.

    Article  Google Scholar 

  21. Anwar, F., S. Latif, M. Ashraf, and A. Gilani. 2007. Moringa oleifera: a food plant with multiple medicinal uses. Phytotherapy Research 21: 17–25.

    Article  PubMed  CAS  Google Scholar 

  22. Amaglo, N.K., R.N. Bennett, R.B. Lo Curto, E.A.S. Rosa, V. Lo Turco, A. Giuffrida, A.L. Curto, F. Crea, and G.M. Timpo. 2010. Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chemistry 122: 1047–1054.

    Article  CAS  Google Scholar 

  23. Padmarao, P., B.M. Acharya, and T.J. Dennis. 1996. Pharmacognostic study on stembark of Moringa oleifera Lam. Bulletin Medico-Ethno-Botanical Research 17: 141–151.

    Google Scholar 

  24. Faizi, S., B.S. Siddiqui, R. Saleem, K. Aftab, F. Shaheen, and A.H. Gilani. 1998. Hypotensive constituents from the pods of Moringa oleifera. Planta Medica 64: 225–228.

    Article  PubMed  CAS  Google Scholar 

  25. Mahajan, S.G., R.G. Mali, and A.A. Mehta. 2007. Protective effect of ethanolic extract of seeds of Moringa oleifera Lam. against inflammation associated with development of arthritis in rats. Journal of Immunotoxicology 4: 39–47.

    Article  PubMed  Google Scholar 

  26. Chumark, P., P. Khunawat, Y. Sanvarinda, S. Phornchirasilp, N.P. Morales, L. Phivthong-ngam, P. Ratanachamnong, S. Srisawat, and KuS Pongrapeeporn. 2008. The in vitro and ex vivo antioxidant properties, hypolipidaemic and antiatherosclerotic activities of water extract of Moringa oleifera Lam. leaves. Journal of Ethnopharmacology 116: 439–446.

    Article  PubMed  Google Scholar 

  27. Mokkhasmit, M., K. Swasdimongkol, W. Ngarmwathana, and U. Permphiphat. 1971. Pharmacological evaluation of Thai medicinal plants. Journal of the Medical Association of Thailand 54: 490–504.

    PubMed  CAS  Google Scholar 

  28. MaAaC, T.N.B.o.A.C.a.F.S. 2006. The amount of food consumption at 95 percentile per capita and eater only. In: Food Consumption Data of Thailand. The Agricultural Co-operative Federation of Thailand Bangkok, Thailand, p 173

  29. Mughal, M.H., G. Ali, P.S. Srivastava, and M. Iqbal. 1999. Improvement of drumstick (Moringa pterygosperma Gaertn.)—a unique source of food and medicine through tissue culture. Hamdard medicus 42: 37–42.

    Google Scholar 

  30. Vichai, V., and K. Kirtikara. 2006. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nature Protocol 1: 1112–1116.

    Article  CAS  Google Scholar 

  31. Green, L.C., D.A. Wagner, J. Glogowski, P.L. Skipper, J.S. Wishnok, and S.R. Tannenbaum. 1982. Analysis of nitrate, nitrite, and [15 N]nitrate in biological fluids. Analytical Biochemistry 126: 131–138.

    Article  PubMed  CAS  Google Scholar 

  32. Tuntipopipat, S., C. Muangnoi, P. Chingsuwanrote, M. Parengam, P. Chantravisut, S. Charoenkiatkul and S. Svasti. 2011. Anti-inflammatory activities of red curry paste extract on lipopolysaccharide-activated murine macrophage cell line. Nutrition (in press)

  33. Hommes, D.W., M.P. Peppelenbosch, and S.J.H. van Deventer. 2003. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut 52: 144–151.

    Article  PubMed  CAS  Google Scholar 

  34. Valledor, A., M. Comalada, L. Santamaría-Babi, J. Lloberas, and A. Celada. 2010. Macrophage proinflammatory activation and deactivation: a question of balance. Advance Immunology 108: 1–20.

    Article  CAS  Google Scholar 

  35. Moncada, S., R.M. Palmer, and E.A. Higgs. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmocological Review 43: 109–142.

    CAS  Google Scholar 

  36. Kolb, J., N. Paul-Eugene, C. Damais, K. Yamaoka, J. Drapier, and B. Dugas. 1994. Interleukin-4 stimulates cGMP production by IFN-gamma-activated human monocytes. Involvement of the nitric oxide synthase pathway. The Journal of Biological Chemistry 269: 9811–9816.

    PubMed  CAS  Google Scholar 

  37. Coleman, J.W. 2001. Nitric oxide in immunity and inflammation. International Immunopharmacology 1: 1397–1406.

    Article  PubMed  CAS  Google Scholar 

  38. Yang, G.-Y., S. Taboada, and J. Liao. 2009. Inflammatory bowel disease: a model of chronic inflammation-induced cancer. Methods in Molecular Biology 511: 193–233.

    Article  PubMed  CAS  Google Scholar 

  39. Chun, O.K., S.J. Chung, and W.O. Song. 2007. Estimated dietary flavonoid intake and major food sources of U.S. adults. The Journal of Nutrition 137: 1244–1252.

    PubMed  CAS  Google Scholar 

  40. Vane, J.R., Y.S. Bakhle, and R.M. Botting. 1998. Cyclooxygenases 1 and 2. Annual Review of Pharmacology and Toxicology 38: 97–120.

    Article  PubMed  CAS  Google Scholar 

  41. Krakauer, T. 2004. Molecular therapeutic targets in inflammation: cyclooxygenase and NF-kappaB. Current Drug Targets. Inflammation and Allergy 3: 317–324.

    Article  PubMed  CAS  Google Scholar 

  42. Pistoia, F., F. Cipollone, C. Ferri, M. Sarà, I. Sudano, and G.B. Desideri. 2010. Cyclooxygenase and atherosclerosis: a smoking area. Current Pharmaceutical Design 16: 2567–2571.

    Article  PubMed  CAS  Google Scholar 

  43. Cerella, C., C. Sobolewski, M. Dicato, and M. Diederich. 2010. Targeting COX-2 expression by natural compounds: a promising alternative strategy to synthetic COX-2 inhibitors for cancer chemoprevention and therapy. Biochemical Pharmacology 80: 1801–1815.

    Article  PubMed  CAS  Google Scholar 

  44. Mikuls, T.R., and K. Saag. 2001. Comorbidity in rheumatoid arthritis. Rheumatic Diseases Clinics of North America 27: 283–303.

    Article  PubMed  CAS  Google Scholar 

  45. Kang, R.Y., J. Freire-Moar, E. Sigal, and C.Q. Chu. 1996. Expression of cyclooxygenase-2 in human and an animal model of rheumatoid arthritis. British Journal of Rheumatology 35: 711–778.

    Article  PubMed  CAS  Google Scholar 

  46. Amin, A.R., M. Attur, R.N. Patel, G.D. Thakker, P.J. Marshall, J. Rediske, S.A. Stuchin, I.R. Patel, and S.B. Abramson. 1997. Superinduction of cyclooxygenase-2 activity in human osteoarthritis-affected cartilage. Influence of nitric oxide. The Journal of Clinical Investigation 99: 1231–1237.

    Article  PubMed  CAS  Google Scholar 

  47. Sano, H., Y. Kawahito, R.L. Wilder, A. Hashiramoto, S. Mukai, K. Asai, S. Kimura, H. Kato, M. Kondo, and T. Hla. 1995. Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Research 55: 3785–3789.

    PubMed  CAS  Google Scholar 

  48. Tsujii, M., S. Kawano, and R.N. DuBois. 1997. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proceedings of the National Academy of Sciences of the United States of America 94: 3336–3340.

    Article  PubMed  CAS  Google Scholar 

  49. Tsujii, M., S. Kawano, S. Tsuji, H. Sawaoka, M. Hori, and R.N. DuBois. 1998. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93: 705–716.

    Article  PubMed  CAS  Google Scholar 

  50. Feghali, C.A., and T.M. Wright. 1997. Cytokines in acute and chronic inflammation. Frontiers in Bioscience 1: 12–26.

    Google Scholar 

  51. Chandel, N.S., W.C. Trzyna, D.S. McClintock, and P.T. Schumacker. 2000. Role of oxidants in NF–κB activation and TNF-α gene transcription induced by hypoxia and endotoxin. Journal of Immunology 165: 1013–1021.

    CAS  Google Scholar 

  52. Aggarwal, B.B., S. Shishodia, S.K. Sandur, M.K. Pandey, and G. Sethi. 2006. Inflammation and cancer: how hot is the link? Biochemical Pharmacology 72: 1605–1621.

    Article  PubMed  CAS  Google Scholar 

  53. Zhang, X., H. Li, H. Feng, H. Xiong, L. Zhang, Y. Song, L. Yu, and X. Deng. 2009. Valnemulin downregulates nitric oxide, prostaglandin E2, and cytokine production via inhibition of NF-[kappa]B and MAPK activity. International Immunopharmacology 9: 810–816.

    Article  PubMed  CAS  Google Scholar 

  54. Trayhurn, P., and I.S. Wood. 2005. Signaling role of adipose tissue: adipokines and inflammation in obesity. Biochemical Society Transactions 33: 1078–1081.

    Article  PubMed  CAS  Google Scholar 

  55. Choy, E.H., and G.S. Panayi. 2001. Cytokine pathways and joint inflammation in rheumatoid arthritis. The New England Journal of Medicine 344: 907–916.

    Article  PubMed  CAS  Google Scholar 

  56. Tilg, H., and A.R. Moschen. 2006. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nature Reviews Immunology 6: 772–783.

    Article  PubMed  CAS  Google Scholar 

  57. Kaplanski, G., V. Marin, F. Montero-Julian, A. Mantovani, and C. Farnarier. 2003. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends in Immunology 24: 25–29.

    Article  PubMed  CAS  Google Scholar 

  58. Cronstein, B. 2007. Interleukin-6: a key mediator of systemic and local symptoms in rheumatoid arthritis. Bulletin of the NYU Hospital for Joint Diseases 65: S11–S15.

    PubMed  Google Scholar 

  59. Pradhan, A.D., J.E. Manson, N. Rifai, J.E. Buring, and P.M. Ridker. 2001. C-Reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. Journal of the American Medical Association 286: 327–334.

    Article  PubMed  CAS  Google Scholar 

  60. Hennigan, S., and A. Kavanaugh. 2008. Interleukin-6 inhibitors in the treatment of rheumatoid arthritis. Ther Clin Risk Manag 4: 767–775.

    PubMed  CAS  Google Scholar 

  61. Hodge, D.R., E.M. Hurt, and W.L. Farrar. 2005. The role of IL-6 and STAT3 in inflammation and cancer. European Journal of Cancer 41: 2502–2512.

    Article  PubMed  CAS  Google Scholar 

  62. Drachenberg, D.E., A.-A.A. Elgamal, R. Rowbotham, M. Peterson, and G.P. Murphy. 1999. Circulating levels of interleukin-6 in patients with hormone refractory prostate cancer. The Prostate 41: 127–133.

    Article  PubMed  CAS  Google Scholar 

  63. Tak, P.P., and G.S. Firestein. 2001. NF–κB: a key role in inflammatory diseases. The Journal of Clinical Investigation 107: 7–11.

    Article  PubMed  CAS  Google Scholar 

  64. Epstein, F.H., P.J. Barnes, and M. Karin. 1997. Nuclear factor-κB—a pivotal transcription factor in chronic inflammatory diseases. The New England Journal of Medicine 336: 1066–1071.

    Article  Google Scholar 

  65. Sethi, G., and V. Tergaonkar. 2009. Potential pharmacological control of the NF-[kappa]B pathway. Trends in Pharmacological Sciences 30: 313–321.

    Article  PubMed  CAS  Google Scholar 

  66. Chang, L., and M. Karin. 2001. Mammalian MAP kinase signalling cascades. Nature 410: 37–40.

    Article  PubMed  CAS  Google Scholar 

  67. Kaminska, B. 2005. MAPK signalling pathways as molecular targets for anti-inflammatory therapy–from molecular mechanisms to therapeutic benefits. Biochimica et Biophysica Acta 1754: 253–262.

    PubMed  CAS  Google Scholar 

  68. Kim, E.K., and E.-J. Choi. 2010. Pathological roles of MAPK signaling pathways in human diseases. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1802: 396–405.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by National Science and Technology Development Agency, Thailand. The authors thank Dr. Harold C. Furr for his helpful commentary during manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siriporn Tuntipopipat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muangnoi, C., Chingsuwanrote, P., Praengamthanachoti, P. et al. Moringa oleifera Pod Inhibits Inflammatory Mediator Production by Lipopolysaccharide-Stimulated RAW 264.7 Murine Macrophage Cell Lines. Inflammation 35, 445–455 (2012). https://doi.org/10.1007/s10753-011-9334-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-011-9334-4

KEY WORDS

Navigation