Skip to main content
Log in

High-resolving mass spectrographs and spectrometers

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Discussed are different types of high resolving mass spectrographs and spectrometers. In detail outlined are (1) magnetic and electric sector field mass spectrographs, which are the oldest systems, (2) Penning Trap mass spectrographs and spectrometers, which have achieved very high mass-resolving powers, but are technically demanding (3) time-of-flight mass spectrographs using high energy ions passing through accelerator rings, which have also achieved very high mass-resolving powers and are equally technically demanding, (4) linear time-of-flight mass spectrographs, which have become the most versatile mass analyzers for low energy ions, while the even higher performing multi-pass systems have only started to be used, (5) orbitraps, which also have achieved remarkably high mass-resolving powers for low energy ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aston, F.W.: Philos. Mag. 38, 709 (1919)

    Article  Google Scholar 

  2. Mattauch, J., Herzog, R.: Zeitschrift für Physik 89, 786 (1934)

    Article  ADS  Google Scholar 

  3. Nier, A.O.: Phys. Rev. 50, 1041 (1936)

    Article  ADS  Google Scholar 

  4. Wollnik, H.: Optics of Charged Particles. Academic Press, Orlando (1987)

    Google Scholar 

  5. Blaum, K.: Phys. Rep. 425, 1 (2006)

    Article  ADS  Google Scholar 

  6. Bosch, F., Litvinov, Yu., Stoehlker, T.: Prog. Part. Nucl. Phys. 73, 84 (2013)

    Article  ADS  Google Scholar 

  7. Irnich, H., Geissel, H., et al.: Phys. Rev. 75, 4182 (1995)

    ADS  Google Scholar 

  8. Wanjo, S., Goriely, S., et al.: Astrophys. J. 606, 1057 (2004)

    Article  ADS  Google Scholar 

  9. Russel, D.H., Edmonson, R.D.: J. Mass Spectrom. 32, 263 (1997)

    Article  Google Scholar 

  10. Hopfgartner, G., Tonelli, D., Varesio, E.: Anal. Bioanal. Chem. 402, 2581 (2012)

    Google Scholar 

  11. Ewald, H.: Z. Naturforsch. 1, 131 (1946)

    ADS  Google Scholar 

  12. Fukumoto, S., Matsuo, T., Matsuda, H.: J. Phys. Soc. Jpn. 25, 946 (1968)

    Article  ADS  Google Scholar 

  13. Wollnik, H., Ewald, H.: Nucl. Instr. Methods 36, 93 (1965)

    Article  Google Scholar 

  14. Marshall, A.G., Hendrickson, C.L.: Mass Spectrom. Rev. 88, 319 (1998)

    Google Scholar 

  15. Boldin, I.A., Nikolaev, E.N.: Rapid Commun. Mass Spectrom. 25, 122 (2011)

    Article  Google Scholar 

  16. Nikolaev, E.N.: 65 th ASMS meeting Proc. Baltimore (2014)

  17. Marshall, A.G., Rodgers, R.: Proc. National Acad. Sci. 105, 18090 (2008)

    Article  ADS  Google Scholar 

  18. Vladimirov, G., Hendrickson, C.L., et al.: J. Am. Soc. Mass Spectrom. 23, 375 (2012)

    Article  ADS  Google Scholar 

  19. Bollen, G., Moore, R.B., Savard, G., Stolzenberg, H.: J. Appl. Phys. 68, 4355 (1990)

    Article  ADS  Google Scholar 

  20. Kluge, H.J., Bollen, G.: Nucl. Instr. Methods B 70, 473 (1992)

    Article  ADS  Google Scholar 

  21. Eliseev, S., Blaum, K., et al.: Phys. Rev. Lett. 110, 082501 (2013)

    Article  ADS  Google Scholar 

  22. Naimi, S., Nakamura, S., et al.: J. Mass Spectrom. Ion Phys. 340, 38 (2013)

    Google Scholar 

  23. Poschenrieder, W.: Int. J. Mass Spectrom. Ion Phys. 9, 357 (1972)

    Article  ADS  Google Scholar 

  24. Mamyrin, B.A., Karateev, V.I.: Sov. Phys. JETP 37, 45 (1973)

    ADS  Google Scholar 

  25. Wollnik, H., Matsuo, T.: Int. J. Mass Spectrom. Ion Phys. 37, 209 (1981)

    Article  ADS  Google Scholar 

  26. Wollnik, H.: Nucl. Inst. Methods 186, 441 (1981)

    Article  ADS  Google Scholar 

  27. Wollnik, H.: Int. J. Mass Spectrom. Ion Phys. 349, 38 (2013)

    Article  Google Scholar 

  28. Kraus, R., Vieira, D.J., Wollnik, H., Wouters, J.M.: Nucl. Inst. Methods A 264, 327 (1988)

    Article  ADS  Google Scholar 

  29. Grix, R., Grüner, U., et al.: Int. J. Mass Spectrom. Ion Phys. 93, 323 (1989)

    Article  ADS  Google Scholar 

  30. Wouters, J.M., Vieira, D.J., Wollnik, H., et al.: Nucl. Inst. Methods A 240, 77 (1985)

    Article  ADS  Google Scholar 

  31. Wouters, J.M., Vieira, D.J., Wollnik, H., et al.: Nucl. Inst. Methods B 26, 286 (1987)

    Article  ADS  Google Scholar 

  32. Wollnik, H., Schwab, T., Berz, M.: GSI Rep. 86-1, 372 (1986)

    Google Scholar 

  33. Wollnik, H.: Nucl. Inst. Methods B 26, 267 (1987) A258, 289 (1987)

    Article  ADS  Google Scholar 

  34. Troetscher, J., Balog, K., et al.: Nucl. Inst. Methods B 70, 455 (1992)

    Article  ADS  Google Scholar 

  35. Klein, Ch., Troetscher, J., Wollnik, H.: Nucl. Inst. Methods A 335, 146 (1993)

    Article  ADS  Google Scholar 

  36. Wollnik, H., Beckert, K., et al.: Nucl. Phys. 626, 327 (1996)

    Article  Google Scholar 

  37. Stadlmann, J., Hausmann, M., et al.: Phys. Lett. B 586, 27 (2004)

    Article  ADS  Google Scholar 

  38. Geissel, H., Knoebel, R., et al.: Hyperfine Interact. 173, 49 (2006)

    Article  ADS  Google Scholar 

  39. Zhang, Y., Tu, X.L., et al.: Nucl. Instr. Methods A 756, 1 (2014)

    Article  ADS  Google Scholar 

  40. Franzke, B.: Nucl. Instr. Methods B 24, 18 (1987)

    Article  ADS  Google Scholar 

  41. Radon, T., Geissel, H., et al.: Nucl. Phys. A 677, 75 (2000)

    Article  ADS  Google Scholar 

  42. Attallah, F., Hausmann, M., et al.: Nucl. Phys. A 701, 561 (2002)

    Article  ADS  Google Scholar 

  43. Litvinov, Y., Geissel, H., et al.: Nucl. Phys. A 759, 23 (2005)

    Article  ADS  Google Scholar 

  44. Nolden, F., Huelsmann, P., et al.: Nucl. Phys. A 701, 56 (2002)

    Google Scholar 

  45. Walker, F., Litvinov, Yu., Geissel, H.: Int. J. Mass Spectrom 349, 247 (2013)

    Article  ADS  Google Scholar 

  46. Tu, X.L., Wang, M., et al.: Nucl. Instr. Methods A 654, 213 (2011)

    Article  ADS  Google Scholar 

  47. Chen, I., Yu, L., et al.: Phys. Rev. Lett. 102, 122503 (2000)

    Article  ADS  Google Scholar 

  48. Sun, B., Knoebel, R., et al.: Phys. Lett. B 688, 294 (2010)

    Article  ADS  Google Scholar 

  49. Sakurai, T., Matsuo, T., Matsuda, H.: Int. J. Mass Spectrom. Ion Phys. 63, 273 (1985)

    Article  ADS  Google Scholar 

  50. Nishiguchi, M., Ueno, Y., Toyoda, M., Setou, M.: J. Mass Spectrom. 44, 594 (2009)

    Article  Google Scholar 

  51. Satoh, T., Sato, T., Kubo, A., Tamura, J.: J. Am. Soc. Mass Spectrom. 22, 797 (2011)

    Article  ADS  Google Scholar 

  52. Wiley, W.C., McLaren, I.H.: Rev. Sci. Instrum. 26, 1150 (1955)

    Article  ADS  Google Scholar 

  53. Wollnik, H.: Patent DE3025764 (1982)

  54. Wollnik, H., Grix, R., et al.: Proc. 2. Japan-China Symp. on Mass Spectrometry, p 181. Bando Press, Osaka (1987)

    Google Scholar 

  55. Kutscher, R., Grix, R., Li, G., Wollnik, H.: Int. J. Mass Spectrom. Ion Phys. 103, 117 (1991)

    Article  ADS  Google Scholar 

  56. Wollnik, H.: Int. J. Mass Spectrom. Ion Phys. 131, 387 (1994)

    Article  ADS  Google Scholar 

  57. Cotter, R., Doroshenko, W.: Patent US6.365.892 B1 (2002)

  58. Kozlovsky, V., Fuhrer, K., et al.: Int. J. Mass Spectrom. Ion Phys. 181, 27 (1998)

    Article  Google Scholar 

  59. Dodonov, A.F., Chernushevich, I.V., et al.: USSR patent 1681340A1 (1987)

  60. Dodonov, A.F., Kozlovsky, V.I., et al.: Eur. J. Mass Spectrom. 6, 481 (2000)

    Article  Google Scholar 

  61. Wollnik, H., Przewloka, M.: Int. J. Mass Spectrom. Ion Phys. 96, 267 (1990)

    Article  ADS  Google Scholar 

  62. Wollnik, H., Casares, A.: Int. J. Mass Spectrom. Ion Phys. 227, 217 (2003)

    Article  Google Scholar 

  63. Ishida, Y., Wada, M., Wollnik, H.: Nucl. Instr. Methods B 21, 241 (2005)

    Google Scholar 

  64. Schury, P., Wada, M., et al.: Nucl. Instr. Methods B 335, 39 (2014)

    Article  ADS  Google Scholar 

  65. Piechaczek, A., Shchepunov, V., et al.: Nucl. Instr. Methods B 266, 4510 (2008)

    Article  ADS  Google Scholar 

  66. Wolf, R.N., Beck, D., Blaum, K., et al.: Nucl. Instr. Methods 686, 82 (2012)

    Article  ADS  Google Scholar 

  67. Wienholtz, F., Beck, D., et al.: Nature 498, 346 (2013)

    Article  ADS  Google Scholar 

  68. Radford, D., Casares, A.: Private communication (2003)

  69. Schury, H., Ito, Y., Wada, M., Wollnik, H.: Int. J. Mass Spectrom. Ion Phys. 359, 19 (2014)

    Article  Google Scholar 

  70. Ito, Y., Schury, P., et al.: Phys. Rev. C 88, 11306 (2013)

    Article  ADS  Google Scholar 

  71. Casares, A., Kholomeev, A., et al.: 47th ASMS meeting Proc. Dallas (1999)

  72. Balsiger, H., et al.: Adv. Space Res. 21, 1527 (1998)

    Article  ADS  Google Scholar 

  73. Kingdon, K.H.: Phys. Rev. 21, 408 (1923)

    Article  ADS  Google Scholar 

  74. Knight, R.D.: Appl. Phys. Lett. 38, 4 (1981)

    Article  Google Scholar 

  75. Gall, L.N, Golikov, Y.K.: USSR patent 1247973 (1986)

  76. Makarov, A.A.: Anal. Chem. 72, 2113 (2000) 78, 1156 (2006)

    Article  Google Scholar 

  77. Makarov, A.A., Grinfeld, D.E., Monastrilsky, M.A.: Nauchnoe Priborostroebnie 24, 68 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Wollnik.

Additional information

Proceedings of the 6th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2014), Takamatsu, Japan,1-5 December 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wollnik, H. High-resolving mass spectrographs and spectrometers. Hyperfine Interact 235, 61–75 (2015). https://doi.org/10.1007/s10751-015-1191-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-015-1191-3

Keywords

Navigation