Skip to main content
Log in

Two photon laser spectroscopy of antiprotonic helium atoms at CERN’s AD

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The ASACUSA collaboration of CERN has carried out two-photon laser spectroscopy of antiprotonic helium atoms using counter-propagating ultraviolet laser beams. This excited some non-linear transitions of the antiproton at the wavelengths λ = 139.8–197.0 nm, in a way that reduced the thermal Doppler broadening of the observed resonances. The resulting narrow spectral lines allowed the measurement of three transition frequencies with fractional precisions of 2.3–5 parts in 109. By comparing these values with three-body QED calculations, the antiproton-to-electron mass ratio was derived as 1836.1526736(23). We briefly review these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hori, M., Walz, J.: Physics at CERN’s Antiproton Decelerator. Prog. Part. Nucl. Phys. 72, 206 (2013)

    Article  ADS  Google Scholar 

  2. Hayano, R.S., Hori, M., Horváth, D., Widmann, E.: Antiprotonic helium and CPT invariance. Rep. Prog. Phys. 70, 1995 (2007)

    Article  ADS  Google Scholar 

  3. Yamazaki, T., Morita, N., Hayano, R.S., Widmman, E., Eades, J.: Antiprotonic helium. Phys. Rep. 366, 183 (2002)

    Article  ADS  Google Scholar 

  4. Korobov, V.I.: Calculation of transitions between metastable states of antiprotonic helium including relativistic and radiative corrections of order R α 4. Phys. Rev. A 042506, 77 (2008)

    Google Scholar 

  5. Hori, M., et al.: Sub-ppm laser spectroscopy of antiprotonic helium and a CPT-violating limit on the antiprotonic charge and mass. Phys. Rev. Lett. 093401, 87 (2001)

    Google Scholar 

  6. Hori, M., et al.: Direct measurement of transition frequencies in isolated He+ atoms, and new CPT violation limits on the antiproton charge and mass. Phys. Rev. Lett. 123401, 91 (2003)

    Google Scholar 

  7. Hori, M., et al.: Determination of the antiproton-to-electron mass ratio by precision laser spectroscopy of He+. Phys. Rev. Lett. 243401, 96 (2006)

    Google Scholar 

  8. Parthey, Ch. G., et al.: Improved measurement of the hydrogen 1s-2s transition frequency. Phys. Rev. Lett. 203001, 107 (2011)

    Google Scholar 

  9. Hori, M., Korobov, V.I.: Calculations of transition probabilities and ac Stark shifts in two-photon laser transitions of antiprotonic helium. Phys. Rev. A 062508, 81 (2010)

    Google Scholar 

  10. Hori, M., et al.: Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio. Nature 475, 484 (2011)

    Article  Google Scholar 

  11. Hori, M., et al.: Analog Cherenkov detectors used in laser spectroscopy experiment on antiprotonic helium. Nucl. Instrum. Methods Phys. Res. A 496, 102 (2003)

    Article  ADS  Google Scholar 

  12. Hori, M., Dax, A.: Chirp-corrected, nanosecond Ti:sapphire laser with 6 MHz linewidth for spectroscopy of antiprotonic helium. Opt. Lett. 34, 1273 (2009)

    Article  ADS  Google Scholar 

  13. Udem, T., Holzwarth, R., Hänsch, T.W.: Optical frequency metrology. Nature 416, 233 (2002)

    Article  ADS  Google Scholar 

  14. Fendel, P., Bergeson, S.D., Udem, T., Hänsch, T.W.: Two-photon frequency comb spectroscopy of the 6s-8s transition in cesium. Opt. Lett. 32, 701 (2007)

    Article  ADS  Google Scholar 

  15. Hori, M.: Photocathode microwire monitor for nondestructive and highly sensitive spatial profile measurements of ultraviolet, x-ray, and charged particle beams. Rev. Sci. Instrum. 113303, 76 (2005)

    Google Scholar 

  16. Korobov, V.I.: Hyperfine structure of metastable states in 3He. Phys. Rev. A 022509, 73 (2006)

    Google Scholar 

  17. Bakalov, D., Jeziorski, B., Korona, T., Szalewicz, K., Tchoukova, E.: Density shift and broadening of transition lines in antiprotonic helium. Phys. Rev. Lett. 84, 235 (2000)

    Article  ADS  Google Scholar 

  18. Mohr, P.J., Taylor, B.N., Newell, D.B.: CODATA recommended values of the fundamental constants: 2006. Rev. Mod. Phys. 80, 633 (2008)

    Article  ADS  Google Scholar 

  19. Farnham, D.L., Van Dyck, R.S. Jr., Schwinberg, P.B.: Determination of the electron?s atomic mass and the proton/electron mass ratio via Penning trap mass spectroscopy. Phys. Rev. Lett. 75, 3598 (1995)

    Article  ADS  Google Scholar 

  20. Beier, T., et al.: New determination of the electron’s mass. Phys. Rev. Lett. 011603, 88 (2002)

    Google Scholar 

  21. Verdú, J., et al.: Electronic g factor of hydrogenlike oxygen 16O7+. Phys. Rev. Lett. 093002, 92 (2004)

    Google Scholar 

  22. Hughes, R.J., Deutch, B.I.: Electric charges of positrons and antiprotons. Phys. Rev. Lett. 69, 578–581 (1992)

    Article  ADS  Google Scholar 

  23. Nakamura, K., et al.: Review of particle physics. J. Phys. 075021, G37 (2010)

    Google Scholar 

  24. Gabrielse, G., et al.: Precision mass spectroscopy of the antiproton and proton using simultaneously trapped particles. Phys. Rev. Lett. 82, 3198 (1999)

    Article  ADS  Google Scholar 

  25. Thompson, J.K., Rainville, S., Pritchard, D.E.: Cyclotron frequency shifts arising from polarization forces. Nature 430, 58 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hori.

Additional information

Proceedings of the 9th International Workshop on Application of Lasers and Storage Devices in Atomic Nuclei Research “Recent Achievements and Future Prospects” (LASER 2013) held in Poznan, Poland, 13-16 May, 2013

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hori, M. Two photon laser spectroscopy of antiprotonic helium atoms at CERN’s AD. Hyperfine Interact 227, 17–22 (2014). https://doi.org/10.1007/s10751-014-1022-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-014-1022-y

Keywords

Mathematics Subject Classifications (2010)

Navigation