Skip to main content

Advertisement

Log in

Influence of elevated temperature and pCO2 on the marine periphytic diatom Navicula distans and its associated organisms in culture

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Influence of temperature and pCO2, reflecting the future climatic scenario, on the marine periphytic diatom (Navicula distans) and its associated organisms was evaluated. Navicula distans along with its associated picoperiphyte and heterotrophic bacteria were exposed to two temperatures (30°C—present day, and 34°C—projected for year 2100) and pCO2 levels (~500 µatm—present day, and ~1500 µatm—projected for year 2100) in a 2 × 2 factorial design. It was observed that rising temperature reduced the abundance of N. distans and picoperiphyte, but increased that of heterotrophic bacteria. On the other hand, rising pCO2 favoured the growth of N. distans and picoperiphyte and had no significant effect on the bacterial growth. Synergistically, rising temperature and pCO2 had a negative effect on N. distans, and a positive effect on picoperiphyte and heterotrophic bacteria. Additionally, this also resulted in the reduction of diatom cell size. This study suggests that in the future climatic scenario, increased abundance of picoperiphyte and heterotrophic bacteria along with smaller N. distans cells might influence the carbon budget and may have a cascading effect on higher trophic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abreu, P. C. O. V., L. R. Rörig, V. Garcia, C. Odebrecht & B. Biddanda, 2003. Decoupling between bacteria and the surf-zone diatom Asterionellopsis glacialis at Cassino Beach, Brazil. Aquatic Microbial Ecology 32: 219–228.

    Article  Google Scholar 

  • Aksnes, D. & J. Egge, 1991. A theoretical model for nutrient uptake in phytoplankton. Marine Ecology Progress Series Oldendorf 70: 65–72.

    Article  Google Scholar 

  • Allgaier, M., U. Riebesell, M. Vogt, R. Thyrhaug & H.-P. Grossart, 2008. Coupling of heterotrophic bacteria to phytoplankton bloom development at different pCO2 levels: a mesocosm study. Biogeosciences 5: 1007–1022.

    Article  CAS  Google Scholar 

  • Baines, S. B. & M. L. Pace, 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnology and Oceanography 36: 1078–1090.

    Article  Google Scholar 

  • Boelen, P., W. H. Van de Poll, H. J. Van der Strate, I. A. Neven, J. Beardall & A. G. J. Buma, 2011. Neither elevated nor reduced CO2 affects the photophysiological performance of the marine Antarctic diatom Chaetoceros brevis. Journal of Experimental Marine Biology and Ecology 406: 38–45.

    Article  Google Scholar 

  • Bourne, N., C. Hodgson, J. Whyte & P. B. Station, 1989. A Manual for Scallop Culture in British Columbia. Department of Fisheries and Oceans, Biological Sciences Branch, Pacific Biological Station.

    Google Scholar 

  • Boyce, D. G., M. R. Lewis & B. Worm, 2010. Global phytoplankton decline over the past century. Nature 466: 591–596.

    Article  CAS  PubMed  Google Scholar 

  • Bratbak, G., M. Heldal, T. Thingstad, B. Riemann & O. Haslund, 1992. Incorporation of viruses into the budget of microbial C-transfer. A first approach. Marine Ecology Progress Series Oldendorf 83: 273–280.

    Article  Google Scholar 

  • Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Article  Google Scholar 

  • Bruckner, C. G., C. Rehm, H. P. Grossart & P. G. Kroth, 2011. Growth and release of extracellular organic compounds by benthic diatoms depend on interactions with bacteria. Environmental Microbiology 13: 1052–1063.

    Article  CAS  PubMed  Google Scholar 

  • Buck, K. & W. Bentham, 1998. A novel symbiosis between a cyanobacterium, Synechococcus sp., an aplastidic protist, Solenicola setigera, and a diatom, Leptocylindrus mediterraneus, in the open ocean. Marine Biology 132: 349–355.

    Article  Google Scholar 

  • Canadell, J. G., C. Le Quéré, M. R. Raupach, C. B. Field, E. T. Buitenhuis, P. Ciais, T. J. Conway, N. P. Gillett, R. Houghton & G. Marland, 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the United States of America 104: 18866–18870.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cole, J. J., S. Findlay & M. L. Pace, 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Marine Ecology Progress Series Oldendorf 43: 1–10.

    Article  Google Scholar 

  • De Kluijver, A., K. Soetaert, K. G. Schulz, U. Riebesell, R. Bellerby & J. Middelburg, 2010. Phytoplankton-bacteria coupling under elevated CO2 levels: a stable isotope labelling study. Biogeosciences 7: 3783–3797.

    Article  Google Scholar 

  • Dickson, A. & F. Millero, 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Research Part A: Oceanographic Research Papers 34: 1733–1743.

    Article  CAS  Google Scholar 

  • Dortch, Q., J. Clayton Jr, S. Thoresen & S. Ahmed, 1984. Species differences in accumulation of nitrogen pools in phytoplankton. Marine Biology 81: 237–250.

    Article  CAS  Google Scholar 

  • Ducklow, H., C. Carlson & W. Smith, 1999. Bacterial growth in experimental plankton assemblages and seawater cultures from the Phaeocystis antarctica bloom in the Ross Sea, Antarctica. Aquatic Microbial Ecology 19: 215–227.

    Article  Google Scholar 

  • Eppley, R. W., 1972. Temperature and phytoplankton growth in the sea. Fishery Bulletin 70: 1063–1085.

    Google Scholar 

  • Finkel, Z. V., J. Beardall, K. J. Flynn, A. Quigg, T. A. V. Rees & J. A. Raven, 2009. Phytoplankton in a changing world: cell size and elemental stoichiometry. Journal of Plankton Research 32: 119–137.

    Article  Google Scholar 

  • Fu, F.-X., M. E. Warner, Y. Zhang, Y. Feng & D. A. Hutchins, 2007. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). Journal of Phycology 43: 485–496.

    Article  Google Scholar 

  • Fuhrman, J. A., 1999. Marine viruses and their biogeochemical and ecological effects. Nature 399: 541–548.

    Article  CAS  PubMed  Google Scholar 

  • Gärdes, A., Y. Ramaye, H.-P. Grossart, U. Passow & M. S. Ullrich, 2012. Effects of Marinobacter adhaerens HP15 on polymer exudation by Thalassiosira weissflogii at different N:P ratios. Marine Ecology Progress Series 461: 1–14.

    Article  Google Scholar 

  • Gran, G., 1952. Determination of the equivalence point in potentiometric titrations. Part II. Analyst 77: 661–671.

    Article  CAS  Google Scholar 

  • Grossart, H.-P., M. Allgaier, U. Passow & U. Riebesell, 2006. Testing the effect of CO2 concentration on the dynamics of marine heterotrophic bacterioplankton. Limnology and Oceanography 51: 1–11.

    Article  CAS  Google Scholar 

  • Guillard, R. R. L. & J. H. Ryther, 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology 8: 229–239.

    Article  CAS  PubMed  Google Scholar 

  • Hawkins, S., R. Hartnoll, J. Kain & T. Norton, 1992. Plant–animal interactions on hard substrata in the north-east Atlantic. Plant–Animal Interactions in the Marine Benthos.

  • Hein, M., M. F. Pedersen & K. Sand-Jensen, 1995. Size-dependent nitrogen uptake in micro- and macroalgae. Marine Ecology Progress Series Oldendorf 118: 247–253.

    Article  Google Scholar 

  • Hopkinson, B. M., C. L. Dupont, A. E. Allen & F. M. Morel, 2011. Efficiency of the CO2-concentrating mechanism of diatoms. Proceedings of the National Academy of Sciences of the United States of America 108: 3830–3837.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoppe, H.-G., P. Breithaupt, K. Walther, R. Koppe, S. Bleck, U. Sommer & K. Jürgens, 2008. Climate warming in winter affects the coupling between phytoplankton and bacteria during the spring bloom: a mesocosm study. Aquatic Microbial Ecology 51: 105–115.

    Article  Google Scholar 

  • Janson, S., E. J. Carpenter & B. Bergman, 1995. Immunolabelling of phycoerythrin, ribulose 1, 5-bisphosphate carboxylase/oxygenase and nitrogenase in the unicellular cyanobionts of Ornithocercus spp. (Dinophyceae). Phycologia 34: 171–176.

    Article  Google Scholar 

  • Johnson, V. R., C. Brownlee, R. E. M. Rickaby, M. Graziano, M. Milazzo & J. M. Hall-Spencer, 2013. Responses of marine benthic microalgae to elevated CO2. Marine Biology 160: 1813–1824.

    Article  CAS  Google Scholar 

  • Kerfahi, D., J. M. Hall-Spencer, B. M. Tripathi, M. Milazzo, J. Lee & J. M. Adams, 2014. Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, Italy. Microbial Ecology 67: 819–828.

    Article  CAS  PubMed  Google Scholar 

  • Kirchman, D. L., H. W. Ducklow, J. J. McCarthy & C. Garside, 1994. Biomass and nitrogen uptake by heterotrophic bacteria during the spring phytoplankton bloom in the North Atlantic Ocean. Deep Sea Research Part I: Oceanographic Research Papers 41: 879–895.

    Article  Google Scholar 

  • Lewis, E. & D. Wallace, 1998. Program Developed for CO2 System Calculations (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Dept. of Energy, Oak Ridge, TN). ORNL/CDIAC-105, Oak Ridge, TN.

  • Li, G. & D. A. Campbell, 2013. Rising CO2 interacts with growth light and growth rate to alter photosystem II photoinactivation of the coastal diatom Thalassiosira pseudonana. PLoS One 8: e55562.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lidbury, I., V. Johnson, J. M. Hall-Spencer, C. B. Munn & M. Cunliffe, 2012. Community-level response of coastal microbial biofilms to ocean acidification in a natural carbon dioxide vent ecosystem. Marine Pollution Bulletin 5: 1063–1066.

    Article  Google Scholar 

  • Lochte, K., P. K. Bjørnsen, H. Giesenhagen & A. Weber, 1997. Bacterial standing stock and production and their relation to phytoplankton in the Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography 44: 321–340.

    Article  CAS  Google Scholar 

  • Low-Décarie, E., G. F. Fussmann & G. Bell, 2011. The effect of elevated CO2 on growth and competition in experimental phytoplankton communities. Global Change Biology 17: 2525–2535.

    Article  Google Scholar 

  • Marie, D., F. Partensky, S. Jacquet & D. Vaulot, 1997. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Applied and Environmental Microbiology 63: 186–193.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mehrbach, C., C. H. Culberson, J. E. Hawley & R. M. Pytkowicz, 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography 18: 897–907.

    Article  CAS  Google Scholar 

  • Newbold, L. K., A. E. Oliver, T. Booth, B. Tiwari, T. DeSantis, M. Maguire, G. Andersen, C. J. van der Gast & A. S. Whiteley, 2012. The response of marine picoplankton to ocean acidification. Environmental Microbiology 9: 2293–2307.

    Article  Google Scholar 

  • Pasciak, W. J. & J. Gavis, 1974. Transport limitation of nutrient uptake in phytoplankton. Limnology and Oceanography 19: 881–888.

    Article  Google Scholar 

  • Patil, J. S. & A. C. Anil, 2005a. Influence of diatom exopolymers and biofilms on metamorphosis in the barnacle Balanus amphitrite. Marine Ecology Progress Series 301: 231–245.

    Article  CAS  Google Scholar 

  • Patil, J. S. & A. C. Anil, 2005b. Quantification of diatoms in biofilms: standardisation of methods. Biofouling 21: 181–188.

    Article  CAS  PubMed  Google Scholar 

  • Pete, R., K. Davidson, M. C. Hart, T. Gutierrez & A. E. Miller, 2010. Diatom derived dissolved organic matter as a driver of bacterial productivity: the role of nutrient limitation. Journal of Experimental Marine Biology and Ecology 391: 20–26.

    Article  Google Scholar 

  • Peter, K. H. & U. Sommer, 2012. Phytoplankton cell size: intra- and interspecific effects of warming and grazing. PLoS One 7: e49632.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piontek, J., N. Händel, G. Langer, J. Wohlers, U. Riebesell & A. Engel, 2009. Effects of rising temperature on the formation and microbial degradation of marine diatom aggregates. Aquatic Microbial Ecology 54: 305–318.

    Article  Google Scholar 

  • Raven, J. A., C. S. Cockell & C. L. De La Rocha, 2008. The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philosophical Transactions of the Royal Society B: Biological 363: 2641–2650.

    Article  CAS  Google Scholar 

  • Reinfelder, J. R., 2011. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annual Review of Marine Science 3: 291–315.

    Article  PubMed  Google Scholar 

  • Riebesell, U., D. A. Wolf-Gladrow & V. Smetacek, 1993. Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361: 249–251.

    Article  CAS  Google Scholar 

  • Riebesell, U., V. Fabry, L. Hansson & J.-P. Gattuso, 2010. Guides to Best Practices for Ocean Acidification Research and Data Reporting. Publications Office of the European Union, Luxembourg.

    Google Scholar 

  • Schulz, K. G., R. Bellerby, C. P. Brussaard, J. Büdenbender, J. Czerny, A. Engel, M. Fischer, S. Koch-Klavsen, S. A. Krug & S. Lischka, 2013. Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide. Biogeosciences Discussions 9: 12543–12592.

    Article  Google Scholar 

  • Sett, S., L. T. Bach, K. G. Schulz, S. Koch-Klavsen, M. Lebrato & U. Riebesell, 2014. Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO2. PLoS One 9: e88308.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shuter, B., 1978. Size dependence of phosphorus and nitrogen subsistence quotas in unicellular microorganisms. Limnology and Oceanography 23: 1248–1255.

    Article  CAS  Google Scholar 

  • Sommer, U., 1999. Periphyton architecture and susceptibility to grazing by periwinkles (Littorina littorea, Gastropoda). International Review of Hydrobiology 84: 197–204.

    Google Scholar 

  • Stocker, T., D. Qin, G. Plattner, M. Tignor, S. Allen, J. Boschung, A. Nauels, Y. Xia, B. Bex & B. Midgley, 2013. IPCC, 2013: climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

  • Sun, J. & D. Liu, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25: 1331–1346.

    Article  Google Scholar 

  • Thomas, M. K., C. T. Kremer, C. A. Klausmeier & E. Litchman, 2012. A global pattern of thermal adaptation in marine phytoplankton. Science 338: 1085–1088.

    Article  CAS  PubMed  Google Scholar 

  • Torstensson, A., M. Chierici & A. Wulff, 2012. The influence of increased temperature and carbon dioxide levels on the benthic/sea ice diatom Navicula directa. Polar Biology 35: 205–214.

    Article  Google Scholar 

  • Torstensson, A., M. Hedblom, J. Andersson, M. X. Andersson & A. Wulff, 2013. Synergism between elevated pCO2 and temperature on the Antarctic sea ice diatom Nitzschia lecointei. Biogeosciences 10: 6391–6401.

    Article  CAS  Google Scholar 

  • Toseland, A., S. J. Daines, J. R. Clark, A. Kirkham, J. Strauss, C. Uhlig, T. M. Lenton, K. Valentin, G. A. Pearson & V. Moulton, 2013. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nature Climate Change 3: 979–984.

    Article  CAS  Google Scholar 

  • Traving, S. J., M. R. J. Clokie & M. Middelboe, 2014. Increased acidification has a profound effect on the interactions between the cyanobacterium Synechococcus sp WH7803 and its viruses. FEMS Microbiology Ecology 87: 133–141.

    Article  CAS  PubMed  Google Scholar 

  • Witt, V., C. Wild, K. Anthony, G. Diaz-Pulido & S. Uthicke, 2011. Effects of ocean acidification on microbial community composition of, and oxygen fluxes through, biofilms from the Great Barrier Reef. Environmental Microbiology 13: 2976–2989.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the Director of CSIR-National Institute of Oceanography for his support and encouragement. We thank Dr. Jane Delany, Newcastle University, UK, for going through the manuscript and improving the style of presentation. We thank Mr. V. D. Khedekar for his help in scanning electron microscopy. The reviewers’ comments have been helpful and are gratefully acknowledged. We also thank our colleagues for their help and suggestions. Lalita V. Baragi acknowledges the research fellowship provided by the Council of Scientific and Industrial Research (CSIR) (India) and support provided by Academy of Scientific and Innovative Research (AcSIR). This work was supported by project Ocean Finder PSC 0105. This is an NIO contribution No. 5767.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arga C. Anil.

Additional information

Handling editor: Judit Padisák

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baragi, L.V., Khandeparker, L. & Anil, A.C. Influence of elevated temperature and pCO2 on the marine periphytic diatom Navicula distans and its associated organisms in culture. Hydrobiologia 762, 127–142 (2015). https://doi.org/10.1007/s10750-015-2343-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2343-9

Keywords

Navigation