Skip to main content
Log in

The Lake Tanganyika cichlid species assemblage: recent advances in molecular phylogenetics

  • SPECIATION IN ANCIENT LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Lake Tanganyika is not the most species-rich of the Great East African Lakes, but comprises the greatest diversity of cichlid fishes in terms of morphology, ecology, and breeding styles. The lake contains a polyphyletic assemblage of cichlid lineages, which evolved from several ancient species that colonized the emerging lake some 9–12 million years ago. Based on morphological characteristics, the Tanganyikan cichlids have been classified into 12, or, more recently, 16 tribes, which are largely supported by molecular data. The radiations of East African cichlids are believed to be driven by complex interactions between extrinsic factors, such as climatic changes and geological processes, and intrinsic biological characteristics of the involved organisms. Diversification within different lineages occurred simultaneously in response to drastic habitat changes such as the establishment of lacustrine deep-water conditions 5–6 MYA and subsequent major lake-level fluctuations. This seems particularly true for the mouthbrooding lineages whereas the substrate breeders underwent a more gradual process of diversification. This review presents an account of the taxonomy and phylogeny of the Lake Tanganyika cichlid species assemblage, its relationship to the African cichlid fauna, key factors leading to the astonishing diversity and discusses recently proposed alternative age estimates for the Lake Tanganyika cichlid species assemblage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albertson, R. C., J. A. Markert, P. D. Danley & T. D. Kocher, 1999. Phylogeny of a rapidly evolving clade: the cichlid fishes of Lake Malawi, East Africa. Proceedings of the National Academy of Sciences USA 96: 5107–5110.

    CAS  Google Scholar 

  • Allender, C. J., O. Seehausen, M. E. Knight, G. F. Turner & N. Maclean, 2003. Divergent selection during speciation of Lake Malawi cichlid fishes inferred from parallel radiations in nuptial coloration. Proceedings of the National Academy of Sciences USA 100: 14074–14079.

    CAS  Google Scholar 

  • Baric, S., W. Salzburger & C. Sturmbauer, 2003. Phylogeography and evolution of the Tanganyikan cichlid genus Tropheus based upon mitochondrial DNA sequences. Journal of Molecular Evolution 56: 54–68.

    PubMed  CAS  Google Scholar 

  • Barlow, G. W., 2000. The Cichlid Fishes: Nature’s Grand Experiment in Evolution. Perseus, Cambridge, MA.

    Google Scholar 

  • Barluenga, M., K. N. Stölting, W. Salzburger, M. Muschick & A. Meyer, 2006. Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 439: 719–723.

    PubMed  CAS  Google Scholar 

  • Beadle, L. C., 1981. The Inland Waters of Tropical Africa. Longman, London.

    Google Scholar 

  • Bobe, R. & A. K. Behrensmeyer, 2004. The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeography, Palaeoclimatology, Palaeoecology 207: 399–420.

    Google Scholar 

  • Bolnick, D. I. & T. J. Near, 2005. Tempo of hybrid inviability in centrarchid fishes (Teleostei: Centrarchidae). Evolution 59: 1754–1767.

    PubMed  Google Scholar 

  • Brandstätter, A., W. Salzburger & C. Sturmbauer, 2005. Mitochondrial phylogeny of the Cyprichromini, a lineage of open-water cichlid fishes endemic to Lake Tanganyika. Molecular Phylogenetics and Evolution 34: 382–391.

    PubMed  Google Scholar 

  • Britton, T., 2005. Estimating divergence times in phylogenetic trees without a molecular clock. Systematic Biology 54: 500–507.

    PubMed  Google Scholar 

  • Clabaut, C., W. Salzburger & A. Meyer, 2005. Comparative phylogenetic analyses of the adaptive radiation of Lake Tanganyikan cichlid fish: nuclear sequences are less homoplasious but also less informative than mitochondrial DNA. Journal of Molecular Evolution 61: 666–681.

    PubMed  CAS  Google Scholar 

  • Cohen, A. S., M. J. Soreghan & C. A. Scholz, 1993. Estimating the age of ancient lakes: an example from Lake Tanganyika, East African rift system. Geology 21: 511–514.

    CAS  Google Scholar 

  • Cohen, A. S., K.-E. Lezzar, J.-J. Tiercelin & M. J. Soreghan, 1997. New palaeogeographic and lake-level reconstructions of Lake Tanganyika: implications for tectonic, climatic and biological evolution in rift lakes. Basin Research 9: 107–132.

    Google Scholar 

  • Coulter, G. W., 1991. Lake Tanganyika and its Life. Oxford University Press, Oxford.

    Google Scholar 

  • Crapon de Crapona, M.-D., 1986. Are ‘preferences’ and ‘tolerances’ in cichlid mate choice important for speciation? Journal of Fish Biology 29(Supplement A): 151–158.

    Google Scholar 

  • Day, J. J. & M. Wilkinson, 2006. On the origin of the Synodontis catfish species flock from Lake Tanganyika. Biology Letters 22: 548–552.

    Google Scholar 

  • Day, J. J., S. Santini & J. Garcia-Moreno, 2007. Phylogenetic relationships of the Lake Tanganyika cichlid tribe Lamprologini: the story from mitochondrial DNA. Molecular Phylogenetics and Evolution 45: 629–642.

    PubMed  CAS  Google Scholar 

  • Delvaux, D., 1995. Age of Lake Malawi (Nyasa) and water level fluctuations. Annual Rapports of the Royal Museum of Central Africa, Department of Geology and Mineralogy 1993 & 1994: 99–108.

  • DeMenocal, P. B., 1995. Plio-Pleistocene African climate. Science 270: 53–59.

    PubMed  CAS  Google Scholar 

  • Deutsch, J. C., 1997. Colour diversification in Malawi cichlids: evidence for adaptation, reinforcement or sexual selection? Biological Journal of the Linnean Society 62: 1–14.

    Google Scholar 

  • Douzery, E. J. P., E. A. Snell, E. Bapteste, F. Delsuc & H. Philippe, 2004. The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proceedings of the National Academy of Sciences USA 101: 15386–15391.

    CAS  Google Scholar 

  • Drucker, E. G. & J. S. Jensen, 1991. Functional analysis of a specialized prey processing behavior: winnowing by surfperches (Teleostei: Embiotocidae). Journal of Morphology 210: 267–287.

    PubMed  CAS  Google Scholar 

  • Duftner, N., S. Koblmüller & C. Sturmbauer, 2005. Evolutionary relationships of the Limnochromini, a tribe of benthic deep water cichlid fishes endemic to Lake Tanganyika, East Africa. Journal of Molecular Evolution 60: 277–289.

    PubMed  CAS  Google Scholar 

  • Duftner, N., K. M. Sefc, S. Koblmüller, B. Nevado, E. Verheyen, H. Phiri & C. Sturmbauer, 2006. Distinct population structure in a phenotypically homogeneous rock-dwelling cichlid fish from Lake Tanganyika. Molecular Ecology 15: 2381–2396.

    PubMed  CAS  Google Scholar 

  • Duftner, N., K. M. Sefc, S. Koblmüller, W. Salzburger, M. Taborsky & C. Sturmbauer, 2007. Parallel evolution of facial stripe patterns in the Neolamprologus brichardi/pulcher species complex endemic to Lake Tanganyika. Molecular Phylogenetics and Evolution 45: 706–715.

    PubMed  Google Scholar 

  • Egger, B., S. Koblmüller, C. Sturmbauer & K. M. Sefc, 2007. Complementary AFLP and mtDNA sequence data distinguish evolutionary processes in the Lake Tanganyika cichlid genus Tropheus. BMC Evolutionary Biology 7: 137.

    PubMed  Google Scholar 

  • Fryer, G., 2006. Evolution in ancient lakes: radiation of Tanganyikan atyid prawns and speciation of pelagic cichlid fishes in Lake Malawi. Hydrobiologia 568: 131–142.

    Google Scholar 

  • Fryer, G. & T. D. Iles, 1972. The Cichlid Fishes of the Great Lakes of Africa. T.H.F., Neptune, NJ.

    Google Scholar 

  • Galis, F. & E. G. Drucker, 1996. Pharyngeal biting mechanics in centrarchid and cichlid fishes: insights into a key evolutionary innovation. Journal of Evolutionary Biology 9: 641–670.

    Google Scholar 

  • Gasse, F., V. Ledee, M. Massault & J.-C. Fontes, 1989. Water-level fluctuations of Lake Tanganyika in phase with oceanic changes during the last glaciation and deglaciation. Nature 342: 57–59.

    Google Scholar 

  • Genner, M. J., O. Seehausen, D. F. R. Cleary, M. E. Knight, E. Michel & G. F. Turner, 2004. How does the taxonomic status of allopatric populations influence species richness within African cichlid species assemblages. Journal of Biogeography 31: 93–102.

    Google Scholar 

  • Genner, M. J., O. Seehausen, D. H. Lunt, D. A. Joyce, P. W. Shaw, G. R. Carvalho & G. F. Turner, 2007. Age of cichlids: new dates for ancient lake fish radiations. Molecular Biology and Evolution 24: 1269–1282.

    PubMed  CAS  Google Scholar 

  • Goodwin, N. B., S. Balshine-Earn & J. D. Reynolds, 1998. Evolutionary transitions in parental care in cichlid fish. Proceedings of the Royal Society London, Series B 265: 2265–2272.

    Google Scholar 

  • Greenwood, P. H., 1973. Morphology, endemism and speciation in African cichlid fishes. Verhandlungen der Deutschen Zoologischen Gesellschaft 66: 115–124.

    Google Scholar 

  • Greenwood, P. H., 1978. A review of the pharyngeal apophysis and its significance in the classification of cichlid fishes. Bulletin of the British Museum of Natural History (Zoology) 33: 297–325.

    Google Scholar 

  • Joyce, D. A., D. H. Lunt, R. Bills, G. F. Turner, C. Katongo, N. Duftner, C. Sturmbauer & O. Seehausen, 2005. Riverine cichlid fish diversity of southern Africa arose during an adaptive radiation in a lost lake. Nature 435: 90–95.

    PubMed  CAS  Google Scholar 

  • Kaatz, I. M., 2002. Multiple sound-producing mechanisms in teleost fishes and hypotheses regarding their behavioural significance. Bioacoustics 12: 230–233.

    Google Scholar 

  • Kaufman, L. S. & K. F. Liem, 1982. Fishes of the suborder Labroidei (Pisces: Perciformes): phylogeny, ecology and evolutionary significance. Breviora 472: 1–19.

    Google Scholar 

  • Kishino, H., J. L. Thorne & W. J. Bruno, 2001. Performance of a divergence time estimation method under a probabilistic model of rate evolution. Molecular Biology and Evolution 18: 352–361.

    PubMed  CAS  Google Scholar 

  • Klett, V. & A. Meyer, 2002. What, if anything, is a Tilapia?—Mitochondrial ND2 phylogeny of Tilapiines and the evolution of parental care systems in the African cichlid fishes. Molecular Biology and Evolution 19: 865–883.

    PubMed  CAS  Google Scholar 

  • Knight, M. E. & G. F. Turner, 1999. Reproductive isolation among closely related Lake Malawi cichlids: can males recognize conspecific females by visual cues? Animal Behaviour 58: 761–768.

    PubMed  Google Scholar 

  • Knight, M. E. & G. F. Turner, 2004. Laboratory mating trials indicate incipient speciation by sexual selection among populations of the cichlid fish Pseudotropheus zebra from Lake Malawi. Proceedings of the Royal Society London, Series B 271: 675–680.

    Google Scholar 

  • Knight, M. E., G. F. Turner, C. Rico, J. J. H. van Oppen & G. M. Hewitt, 1998. Microsatellite paternity analysis on captive Lake Malawi cichlids supports reproductive isolation by direct mate choice. Molecular Ecology 7: 1605–1610.

    Google Scholar 

  • Koblmüller, S., N. Duftner, C. Sturmbauer, H. Sammer, N. Gantner, R. Kopp, S. Voigt, B. Stadlbauer, A. Brandstätter & R. Hanel, 2003. Vergleichende Betrachtung von Ernährungsmorphologie und Nahrungsspezifität ausgewählter mediterraner Lippfisch-Arten (Perciformes, Labridae). Berichte des naturwissenschaftlich-medizinischen Vereins Innsbruck 90: 219–230.

    Google Scholar 

  • Koblmüller, S., W. Salzburger & C. Sturmbauer, 2004. Evolutionary relationships in the sand-dwelling cichlid lineage of Lake Tanganyika suggest multiple colonization of rocky habitats and convergent origin of biparental mouthbrooding. Journal of Molecular Evolution 58: 79–96.

    PubMed  Google Scholar 

  • Koblmüller, S., N. Duftner, C. Katongo, H. Phiri & C. Sturmbauer, 2005. Ancient divergence in bathypelagic Lake Tanganyika deepwater cichlids: mitochondrial phylogeny of the tribe Bathybatini. Journal of Molecular Evolution 60: 297–314.

    PubMed  Google Scholar 

  • Koblmüller, S., C. Sturmbauer, E. Verheyen, A. Meyer & W. Salzburger, 2006. Mitochondrial phylogeny and phylogeography of East African squeaker catfishes (Siluriformes: Synodontis). BMC Evolutionary Biology 6: 49.

    PubMed  Google Scholar 

  • Koblmüller, S., N. Duftner, K. M. Sefc, M. Aibara, M. Stipacek, M. Blanc, B. Egger & C. Sturmbauer, 2007a. Reticulate phylogeny of gastropod-shell-breeding cichlids from Lake Tanganyika—the result of repeated introgressive hybridization. BMC Evolutionary Biology 7: 7.

    PubMed  Google Scholar 

  • Koblmüller, S., B. Egger, C. Sturmbauer & K. M. Sefc, 2007b. Evolutionary history of Lake Tanganyika’s scale-eating cichlid fishes. Molecular Phylogenetics and Evolution 44: 1295–1305.

    PubMed  Google Scholar 

  • Koblmüller, S., K. M. Sefc, N. Duftner, M. Warum & C. Sturmbauer, 2007c. Genetic population structure as indirect measure of dispersal ability in a Lake Tanganyika cichlid. Genetica 130: 121–131.

    PubMed  Google Scholar 

  • Koblmüller, S., U. K. Schliewen, N. Duftner, K. M. Sefc, C. Katongo & C. Sturmbauer, 2008. Age and spread of the haplochromine cichlid fishes in Africa. Molecular Phylogenetics and Evolution. doi:10.1016/j.ympev.2008.05.045.

    PubMed  Google Scholar 

  • Koch, M., S. Koblmüller, K. M. Sefc, N. Duftner, C. Katongo & C. Sturmbauer, 2007. Evolutionary history of the endemic Lake Tanganyika cichlid fish Tylochromis polylepis: a recent intruder to a mature adaptive radiation. Journal of Zoological Systematics and Evolutionary Research 45: 64–71.

    Google Scholar 

  • Kocher, T. D., 2004. Adaptive evolution and explosive speciation: the cichlid fish model. Nature Reviews Genetics 5: 288–298.

    PubMed  CAS  Google Scholar 

  • Kohda, M., Y. Yanagisawa, T. Sato, K. Nakaya, Y. Rimura, K. Matsumoto & H. Ochi, 1996. Geographical color variation in cichlid fishes at the southern end of Lake Tanganyika. Environmental Biology of Fishes 45: 237–248.

    Google Scholar 

  • Kornfield, I. & P. F. Smith, 2000. African cichlid fishes: model systems for evolutionary biology. Annual Reviews in Ecology and Systematics 31: 163–196.

    Google Scholar 

  • Lezzar, K. E., J.-J. Tiercelin, M. de Batist, A. S. Cohen, T. Bandora, P. van Rensbergen, C. le Turdu, W. Mifundu & J. Klerkx, 1996. New seismic stratigraphy and Late Tertiary history of the north Tanganyika basin, East African rift system, deduced from multichannel and high-resolution reflection seismic data and piston core evidence. Basin Research 8: 1–28.

    Google Scholar 

  • Liem, K. F., 1973. Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Systematic Zoology 22: 425–441.

    Google Scholar 

  • Liem, K. F., 1986. The pharyngeal jaw apparatus of the Embiotocidae (Teleostei): a functional and evolutionary perspective. Copeia 1986: 311–323.

    Google Scholar 

  • Liem, K. F. & P. H. Greenwood, 1981. A functional approach to the phylogeny of pharyngognath teleosts. American Zoologist 21: 83–101.

    Google Scholar 

  • Liem, K. F. & S. L. Sanderson, 1986. The pharyngeal jaw apparatus of labrid fishes: a functional morphological perspective. Journal of Morphology 187: 143–158.

    Google Scholar 

  • Lippitsch, E., 1998. Phylogenetic study of cichlid fishes in Lake Tanganyika: a lepidological approach. Journal of Fish Biology 53: 752–766.

    Google Scholar 

  • Lobel, P. S., 2001. Acoustic behavior of cichlid fishes. Journal of Aquariculture and Aquatic Sciences 9: 167–186.

    Google Scholar 

  • Mabuchi, K., M. Miya, Y. Azuma & M. Nishida, 2007. Independent evolution of the specialized pharyngeal jaw apparatus in cichlid and labrid fishes. BMC Evolutionary Biology 7: 10.

    PubMed  Google Scholar 

  • Marijnissen, S. A., E. Michel, S. R. Daniels, D. Erpenbeck, S. B. Menken & F. R. Schram, 2006. Molecular evidence for recent divergence of Lake Tanganyika endemic crabs (Decapoda: Platythelphusidae). Molecular Phylogenetics and Evolution 40: 628–634.

    PubMed  CAS  Google Scholar 

  • Martens, K., G. Coulter & B. Goddeeris, 1994. Speciation in ancient lakes—40 years after Brooks. In Martens, K., B. Goddeeris & G. Coulter (eds), Speciation in Ancient Lakes. Archiv für Hydrobiologie, Vol. 44: 75–96.

  • Mayr, E., 1984. Evolution of fish species flocks: a commentary. In Echelle, A. A. & I. Kornfield (eds), Evolution of Fish Species Flocks. University of Maine at Orono Press, Orono: 3–11.

    Google Scholar 

  • McKaye, K. R. & W. N. Gray, 1984. Extrinsic barriers to gene flow in rock-dwelling cichlids of Lake Malawi: macrohabitat heterogeneity and reef colonization. In Echelle, A. A. & I. Kornfield (eds), Evolution of Fish Species Flocks. University of Maine at Orono Press, Orono: 169–183.

    Google Scholar 

  • McKaye, K. R., J. H. Howard, J. R. Stauffer Jr., R. P. Morgan & F. Shonhiwa, 1993. Sexual selection and genetic relationships of a sibling species complex of bower building cichlids in Lake Malawi, Africa. Japanese Journal of Ichthyology 40: 15–21.

    Google Scholar 

  • Meyer, A., 1993. Phylogenetic relationships and evolutionary processes in East African cichlids. Trends in Ecology and Evolution 8: 279–284.

    Google Scholar 

  • Meyer, A., T. D. Kocher, P. Basasibwaki & A. C. Wilson, 1990. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347: 550–553.

    PubMed  CAS  Google Scholar 

  • Moran, P., I. Kornfield & P. N. Reinthal, 1994. Molecular systematics and radiation of the haplochromine cichlids (Teleostei, Perciformes) of Lake Malawi. Copeia 1994: 274–288.

    Google Scholar 

  • Nagl, S., H. Tichy, W. E. Mayer, N. Takezaki, N. Takahata & J. Klein, 2000. The origin and age of haplochromine fishes in Lake Victoria, East Africa. Proceedings of the Royal Society London, Series B 267: 1059–1061.

    Google Scholar 

  • Nicholson, S. E., 1999. Historical and modern fluctuations of Lakes Tanganyika and Rukwa and their relationship to rainfall variability. Climatic Change 41: 53–71.

    Google Scholar 

  • Nishida, M., 1991. Lake Tanganyika as an evolutionary reservoir of old lineages of East African cichlid fishes: inferences from allozyme data. Experientia 47: 974–979.

    Google Scholar 

  • Nishida, M., 1997. Phylogenetic relationships and evolution of Tanganyikan cichlids: a molecular perspective. In Kawanabe, H., M. Hori & M. Nagoshi (eds), Fish Communities in Lake Tanganyika. Kyoto University Press, Kyoto, Japan: 1–23.

    Google Scholar 

  • Poll, M., 1986. Classification des Cichlidae du lac Tanganika: tribus, genres et espèces. Memoires de la classe des sciences. T. XLV. Fascicule 2 edn. Académie Royale de Belgique, Brussels.

    Google Scholar 

  • Renner, S. S. & L.-B. Zhang, 2004. Biogeography of the Pistia clade (Araceae): based on chloroplast and mitochondrial DNA sequences and Bayesian divergence time inference. Systematic Biology 53: 422–432.

    PubMed  Google Scholar 

  • Ribbink, A. J., 1994. Alternative perspectives on some controversial aspects of cichlid fish speciation. Advances in Limnology 44: 101–125.

    Google Scholar 

  • Rice, A. N. & P. S. Lobel, 2002. Enzyme activities of pharyngeal jaw musculature in the cichlid Tramitichromis intermedius: implications for sound production in cichlid fishes. Journal of Experimental Biology 205: 3519–3523.

    PubMed  CAS  Google Scholar 

  • Rice, A. N. & P. S. Lobel, 2003. The pharyngeal jaw apparatus of the Cichlidae and Pomacentridae: function in feeding and sound production. Reviews in Fish Biology and Fisheries 13: 422–444.

    Google Scholar 

  • Robinson-Rechavi, M. & D. Huchon, 2000. RRTree: Relative-Rate Test between groups of sequences on a phylogenetic tree. Bioinformatics 16: 296–297.

    PubMed  CAS  Google Scholar 

  • Rossiter, A., 1995. The cichlid fish assemblages of Lake Tanganyika: ecology, behaviour and evolution of its species flock. Advances in Ecological Research 26: 187–252.

    Google Scholar 

  • Rüber, L., E. Verheyen, C. Sturmbauer & A. Meyer, 1998. Lake level fluctuations and speciation in rock-dwelling cichlid fish in Lake Tanganyika, East Africa. In Grant, P. (ed.), Evolution on Islands. Oxford University Press, Oxford: 225–240.

    Google Scholar 

  • Rüber, L., E. Verheyen & A. Meyer, 1999. Replicated evolution of trophic specializations in an endemic cichlid fish lineage from Lake Tanganyika. Proceedings of the National Academy of Sciences USA 96: 10230–10235.

    Google Scholar 

  • Rüber, L., A. Meyer, C. Sturmbauer & E. Verheyen, 2001. Population structure in two sympatric species of the Lake Tanganyika cichlid tribe Eretmodini: evidence for introgression. Molecular Ecology 10: 1207–1225.

    PubMed  Google Scholar 

  • Salzburger, W. & A. Meyer, 2004. The species flocks of East African cichlid fishes: recent advances in molecular phylogenetics and population genetics. Naturwissenschaften 91: 277–290.

    PubMed  CAS  Google Scholar 

  • Salzburger, W., A. Meyer, S. Baric, E. Verheyen & C. Sturmbauer, 2002a. Phylogeny of the Lake Tanganyika cichlid species flock and its relationships to Central and East African haplochromine cichlid fish faunas. Systematic Biology 51: 113–135.

    PubMed  Google Scholar 

  • Salzburger, W., S. Baric & C. Sturmbauer, 2002b. Speciation via introgressive hybridization in East African cichlids? Molecular Ecology 11: 619–625.

    PubMed  CAS  Google Scholar 

  • Salzburger, W., T. Mack, E. Verheyen & A. Meyer, 2005. Out of Taganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evolutionary Biology 5: 17.

    PubMed  Google Scholar 

  • Sanderson, M. J., 2002. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution 19: 101–109.

    PubMed  CAS  Google Scholar 

  • Schelly, R., W. Salzburger, S. Koblmüller, N. Duftner & C. Sturmbauer, 2006. Phylogenetic relationships of the lamprologine cichlid genus Lepidiolamprologus (Teleostei: Perciformes) based on mitochondrial and nuclear sequences, suggesting introgressive hybridization. Molecular Phylogenetics and Evolution 38: 426–438.

    PubMed  CAS  Google Scholar 

  • Schliewen, U. K. & B. Klee, 2004. Reticulate speciation in Cameroonian crater lake cichlids. Frontiers in Zoology 1: 5

    PubMed  Google Scholar 

  • Schliewen, U. K., D. Tautz & S. Pääbo, 1994. Sympatric speciation suggested by monophyly of crater lake cichlids. Nature 368: 629–632.

    PubMed  CAS  Google Scholar 

  • Schliewen, U. K., K. Rassmann, M. Markmann, J. Markert, T. D. Kocher & D. Tautz, 2001. Genetic and ecological divergence of a monophyletic cichlid species pair under fully sympatric conditions in Lake Ejagham, Cameroon. Molecular Ecology 10: 1471–1488.

    PubMed  CAS  Google Scholar 

  • Scholz, C. A. & B. R. Rosendahl, 1988. Low lake stands in Lakes Malawi and Tanganyika, East Africa, delineated with multifold seismic data. Science 240: 1645–1648.

    PubMed  Google Scholar 

  • Scholz, C. A., J. W. King, G. S. Ellis, P. K. Swart, J. C. Stager & S. M. Colman, 2003. Palaeolimnology of Lake Tanganyika, East Africa, over the past 100 k yr. Journal of Palaolimnology 30: 139–150.

    Google Scholar 

  • Seehausen, O., 2002. Patterns in fish radiation are compatible with Pleistocene desiccation of Lake Victoria and 14, 600-year history for its species flock. Proceedings of the Royal Society London, Series B 269: 491–497.

    Google Scholar 

  • Seehausen, O., 2004. Hybridization and adaptive radiation. Trends in Ecology and Evolution 19: 198–207.

    PubMed  Google Scholar 

  • Seehausen, O., 2006. African cichlid fish: a model system in adaptive radiation research. Proceedings of the Royal Society, Series B 273: 1987–1998.

    Google Scholar 

  • Seehausen, O. & J. J. M. van Alphen, 1999. Can sympatric speciation by disruptive sexual selection explain rapid evolution of cichlids diversity in Lake Victoria? Ecology Letters 2: 262–271.

    Google Scholar 

  • Seehausen, O., J. J. M. van Alphen & F. Witte, 1997. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277: 1808–1811.

    CAS  Google Scholar 

  • Seehausen, O., F. Witte, J. J. M. van Alphen & N. Bouton, 1998. Direct mate choice maintains diversity among sympatric cichlids in Lake Victoria. Journal of Fish Biology 53(Supplement A): 37–55.

    Google Scholar 

  • Seehausen, O., J. J. M. van Alphen & R. Lande, 1999. Color polymorphism and sex ratio distortion in a cichlid fish as an incipient stage in sympatric speciation by sexual selection. Ecology Letters 2: 367–378.

    Google Scholar 

  • Sefc, K. M., 2008. Variance in reproductive success and the opportunity for selection in a serially monogamous species: simulations of the mating system of Tropheus (Teleostei: Cichlidae). Hydrobiologia (this volume). doi:10.1007/s10750-008-9563-1

  • Sefc, K. M., S. Baric, W. Salzburger & C. Sturmbauer, 2007. Species-specific population structure in rock-specialized sympatric cichlid species in Lake Tanganyika, East Africa. Journal of Molecular Evolution 64: 33–49.

    PubMed  CAS  Google Scholar 

  • Sepulchre, P., G. Ramstein, F. Fluteau, M. Schuster, J.-J. Tiercelin & M. Brunet, 2006. Tectonic uplift and eastern African aridification. Science 313: 1419–1423.

    PubMed  CAS  Google Scholar 

  • Snoeks, J., 2000. How well known is the ichthyodiversity of the large East African lakes? Advances in Ecological Research 31: 17–38.

    Google Scholar 

  • Snoeks, J., L. Rüber & E. Verheyen, 1994. The Tanganyika problem: comments on the taxonomy and distribution patterns of its cichlid fauna. In Martens, K., G. Goddeeris & G. W. Coulter (eds), Speciation in Ancient Lakes. Schweizerbart’sche Verlagsdruckerei, Stuttgart: 355–372.

    Google Scholar 

  • Stauffer, J. R., N. J. Bowers, T. D. Kocher & K. R. McKaye, 1996. Evidence of hybridization between Cynotilapia afra and Pseudotropheus zebra (Teleostei: Cichlidae) following an intralacustrine translocation in Lake Malawi. Copeia 1996: 203–208.

    Google Scholar 

  • Stewart, K. M., 2001. The freshwater fish of Neogene Africa (Miocene-Pleistocene): systematics and biogeography. Fish and Fisheries 2: 177–230.

    Google Scholar 

  • Stiassny, M. L. J., 1991. Phylogenetic interrelationships of the family Cichlidae: an overview. In Keenleyside, M. H. A. (ed.), Cichlid Fishes, Behaviour, Ecology and Evolution. Chapman & Hall, London: 1–35.

    Google Scholar 

  • Stiassny, M. L. J. & J. S. Jensen, 1987. Labroid interrelationships revisited: morphological complexity, key innovations, and the study of comparative diversity. Bulletin of the Museum of Comparative Zoology 151: 269–319.

    Google Scholar 

  • Streelman, J. T. & S. A. Karl, 1997. Reconstructing labroid evolution with single-copy nuclear DNA. Proceedings of the Royal Society London, Series B 264: 1011–1020.

    CAS  Google Scholar 

  • Streelman, J. T., R. Zardoya, A. Meyer & S. A. Karl, 1998. Multilocus phylogeny of cichlid fishes (Pisces: Perciformes): evolutionary comparison of microsatellite and single-copy nuclear loci. Molecular Biology and Evolution 15: 798–808.

    PubMed  CAS  Google Scholar 

  • Streelman, J. T., S. L. Gmyrnek, M. R. Kidd, C. Kidd, R. L. Robinson, E. Hert, A. J. Ambali & T. D. Kocher, 2004. Hybridization and contemporary evolution in an introduced cichlid fish from Lake Malawi National Park. Molecular Ecology 12: 2471–2479.

    Google Scholar 

  • Sturmbauer, C., 1998. Explosive speciation in cichlid fishes of the African Great Lakes: a dynamic model of adaptive radiation. Journal of Fish Biology 53(Supplement A): 18–36.

    Article  Google Scholar 

  • Sturmbauer, C. & A. Meyer, 1992. Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fishes. Nature 358: 578–581.

    PubMed  CAS  Google Scholar 

  • Sturmbauer, C. & A. Meyer, 1993. Mitochondrial phylogeny of the endemic mouthbrooding lineages of cichlid fishes of Lake Tanganyika, East Africa. Molecular Biology and Evolution 10: 751–768.

    PubMed  CAS  Google Scholar 

  • Sturmbauer, C., E. Verheyen & A. Meyer, 1994. Mitochondrial phylogeny of the Lamprologini, the major substrate spawning lineage of cichlid fishes from Lake Tanganyika in Eastern Africa. Molecular Biology and Evolution 11: 691–703.

    PubMed  CAS  Google Scholar 

  • Sturmbauer, C., E. Verheyen, L. Rüber & A. Meyer, 1997. Phylogeographic patterns in populations of cichlid fishes from rock habitats in Lake Tanganyika. In Kocher, T. D. & C. Stepien (eds), Molecular Phylogeny of Fishes. Academic Press, San Diego: 97–111.

    Google Scholar 

  • Sturmbauer, C., S. Baric, W. Salzburger, L. Rüber & E. Verheyen, 2001. Lake level fluctuations synchronize genetic divergence of cichlid fishes in African lakes. Molecular Biology and Evolution 18: 144–154.

    PubMed  CAS  Google Scholar 

  • Sturmbauer, C., U. Hainz, S. Baric, E. Verheyen & W. Salzburger, 2003. Evolution of the tribe Tropheini from Lake Tanganyika: synchronized explosive speciation producing multiple evolutionary parallelism. Hydrobiologia 500: 51–64.

    Google Scholar 

  • Sturmbauer, C., S. Koblmüller, K. M. Sefc & N. Duftner, 2005. Phylogeographic history of the genus Tropheus, a lineage of rock-dwelling cichlid fishes endemic to Lake Tanganyika. Hydrobiologia 542: 335–366.

    Google Scholar 

  • Sugawara, T., Y. Terai, H. Imai, G. F. Turner, S. Koblmüller, C. Sturmbauer, Y. Shichida & N. Okada, 2005. Parallelism of amino acid changes at the RH1 affecting spectral sensitivity among deep-water cichlids from Lakes Tanganyika and Malawi. Proceedings of the National Academy of Sciences USA 102: 5448–5453.

    CAS  Google Scholar 

  • Takahashi, T., 2003. Systematics of Tanganyikan cichlid fishes (Teleostei: Perciformes). Ichthyological Research 50: 367–382.

    Google Scholar 

  • Takahashi, T., 2004. Morphological and genetic distinctness of rock and shell-bed dwelling Telmatochromis (Teleostei, Cichlidae) in the south of Lake Tanganyika suggest the existence of two species. Journal of Fish Biology 65: 419–435.

    Google Scholar 

  • Takahashi, K. & N. Okada, 2002. Mosaic structure and retropositional dynamics during evolution of subfamilies of short interspersed elements in African cichlids. Molecular Biology and Evolution 19: 1303–1312.

    PubMed  CAS  Google Scholar 

  • Takahashi, K., Y. Terai, M. Nishida & N. Okada, 1998. A novel family of short interspersed elements (SINEs) from cichlids: the patterns of insertion of SINEs at orthologous loci support the proposed monophyly of four major groups of cichlid fishes in Lake Tanganyika. Molecular Biology and Evolution 15: 391–407.

    PubMed  CAS  Google Scholar 

  • Takahashi, K., M. Nishida, M. Yuma & N. Okada, 2001a. Retroposition of the AFC family of SINEs (Short Interspersed Repetitive Elements) before and during the adaptive radiation of cichlid fishes in Lake Malawi and related inferences about phylogeny. Journal of Molecular Evolution 53: 496–507.

    PubMed  CAS  Google Scholar 

  • Takahashi, K., Y. Terai, M. Nishida & N. Okada, 2001b. Phylogenetic relationships and ancient incomplete lineage sorting among cichlid fishes in Lake Tanganyika as revealed by analysis of the insertion of retroposons. Molecular Biology and Evolution 18: 2057–2066.

    PubMed  CAS  Google Scholar 

  • Takahashi, R., K. Watanabe, M. Nishida & M. Hori, 2007. Evolution of feeding specialization in Tanganyikan scale-eating cichlids: a molecular phylogenetic approach. BMC Evolutionary Biology 7: 195.

    PubMed  Google Scholar 

  • Takezaki, N., A. Rzhetsky & M. Nei, 1995. Phylogenetic test of the molecular clock and linearized tree. Molecular Biology and Evolution 12: 823–833.

    PubMed  CAS  Google Scholar 

  • Terai, Y., K. Takahashi, M. Nishida, T. Sato & N. Okada, 2003. Using SINEs to probe ancient explosive speciation: “hidden” radiation of African cichlids? Molecular Biology and Evolution 20: 924–930.

    PubMed  CAS  Google Scholar 

  • Terai, Y., N. Takezaki, W. E. Mayer, H. Tichy, N. Takahata, J. Klein & N. Okada, 2004. Phylogenetic relationships among East African haplochromine fish as revealed by short interspersed elements (SINEs). Journal of Molecular Evolution 58: 64–78.

    PubMed  CAS  Google Scholar 

  • Thorne, J. L., H. Kishino & I. S. Painter, 1998. Estimating the rate of evolution of the rate of molecular evolution. Molecular Biology and Evolution 15: 1647–1657.

    PubMed  CAS  Google Scholar 

  • Tiercelin, J.-J. & A. Mondeguer, 1991. The geology of the Tanganyika trough. In Coulter, G. W. (ed.), Lake Tanganyika and its Life. Oxford University Press, London: 7–48.

    Google Scholar 

  • Turner, G. F., 2007. Adaptive radiation of cichlid fish. Current Biology 17: 827–831.

    Google Scholar 

  • Turner, G. F. & M. T. Burrows, 1995. A model of sympatric speciation by sexual selection. Proceedings of the Royal Society London, Series B 260: 287–292.

    Google Scholar 

  • Turner, G. F., O. Seehausen, M. E. Knight, C. J. Allender & R. L. Robinson, 2001. How many species of cichlid fishes are there in African lakes? Molecular Ecology 10: 793–806.

    PubMed  CAS  Google Scholar 

  • Verheyen, E., L. Rüber, J. Snoeks & A. Meyer, 1996. Mitochondrial phylogeography of rock dwelling cichlid fishes reveals evolutionary influence of historic lake level fluctuations in Lake Tanganyika, Africa. Philosophical Transactions of the Royal Society London, Series B 351: 797–805.

    CAS  Google Scholar 

  • Verheyen, E., W. Salzburger, J. Snoeks & A. Meyer, 2003. Origin of the superflock of cichlid fishes from Lake Victoria, East Africa. Science 300: 325–329.

    PubMed  CAS  Google Scholar 

  • Wainwright, P. C., 2005. Functional morphology of the pharyngeal jaw apparatus. In Shadwick, R. & G. V. Lauder (eds), Biomechanics of Fishes. Elsevier, Chicago: 77–101.

    Google Scholar 

  • West, K. & E. Michel, 2000. The dynamics of endemic diversification: molecular phylogeny suggests an explosive origin of the thiarid gastropods of Lake Tanganyika. Advances in Ecological Research 31: 331–354.

    Google Scholar 

  • Wiegman, B. M., D. K. Yeates, J. L. Thorne & H. Kishino, 2003. Time flies, a new molecular time-scale for brachyceran fly evolution without a clock. Systematic Biology 52: 745–756.

    Google Scholar 

  • Wilson, A. B., M. Glaubrecht & A. Meyer, 2004. Ancient lakes as evolutionary reservoirs: evidence from the thalassoid gastropods of Lake Tanganyika. Proceedings of the Royal Society London, Series B 271: 529–536.

    Google Scholar 

  • Yamaoka, K., 1978. Pharyngeal jaw structure in labrid fishes. Publications of the Seto Marine Biological Laboratory 24: 409–426.

    Google Scholar 

Download references

Acknowledgments

We thank P. Ngalande, H. Phiri, and the team at the Mpulungu station of the Ministry of Agriculture and Cooperatives, Republic of Zambia, for their longstanding cooperation during fieldwork. We are further grateful to B. Egger and two anonymous reviewers for valuable comments on earlier versions of the manuscript. Financial support was provided by the provincial government of Styria to KMS and the Austrian Science Foundation (grants P17380 to KMS and P17680 to CS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Koblmüller.

Additional information

Guest editors: T. Wilke, R. Väinölä & F. Riedel

Patterns and Processes of Speciation in Ancient Lakes: Proceedings of the Fourth Symposium on Speciation in Ancient Lakes, Berlin, Germany, September 4–8, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koblmüller, S., Sefc, K.M. & Sturmbauer, C. The Lake Tanganyika cichlid species assemblage: recent advances in molecular phylogenetics. Hydrobiologia 615, 5–20 (2008). https://doi.org/10.1007/s10750-008-9552-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9552-4

Keywords

Navigation