Skip to main content
Log in

Pacing-induced cardiomyopathy: pathophysiological insights through matrix metalloproteinases

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Pacing-induced ventricular dysfunction and pacing-induced cardiomyopathy (PiCMP) are recognized complications of chronic right ventricular pacing. Alterations in myocardial perfusion and sympathetic innervation contribute to the development of pacing-induced heart disease. However, it is unlikely that these are the only processes involved. Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade the collagenous extracellular matrix and play a central role in left ventricular remodelling during the development of heart failure. While the pathophysiological mechanisms and altered MMP expression that occur in chronic pressure overload, ischaemic and non-ischaemic dilated cardiomyopathy have been defined, those that occur in the clinical setting of pacing-induced ventricular dysfunction and PiCMP have not been reported. Here we review the clinical epidemiology of pacing-induced ventricular dysfunction and discuss how data derived from animal models provide insight into how changes in MMP expression and function contribute to the development of PiCMP. The review concludes by exploring pacing strategies that may be used to prevent pacing-induced ventricular dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wilkoff BL, Cook JR, Epstein AE, Greene HL, Hallstrom AP, Hsia H, Kutalek SP, Sharma A (2002) Investigators DCaVIDT. Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the dual chamber and vvi implantable defibrillator (david) trial. JAMA 288:3115–3123

    Article  PubMed  Google Scholar 

  2. Steinberg JS, Fischer A, Wang P, Schuger C, Daubert J, McNitt S, Andrews M, Brown M, Hall WJ, Zareba W, Moss AJ, Investigators MI (2005) The clinical implications of cumulative right ventricular pacing in the multicenter automatic defibrillator trial ii. J Cardiovasc Electrophysiol 16:359–365

    Article  PubMed  Google Scholar 

  3. Sweeney MO, Hellkamp AS, Ellenbogen KA, Greenspon AJ, Freedman RA, Lee KL, Lamas GA, Investigators MOST (2003) Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline qrs duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation 107:2932–2937

    Article  PubMed  Google Scholar 

  4. Doshi RN, Daoud EG, Fellows C, Turk K, Duran A, Hamdan MH, Pires LA (2005) Left ventricular-based cardiac stimulation post av nodal ablation evaluation (the pave study). J Cardiovasc Electrophysiol 16:1160–1165

    Article  PubMed  Google Scholar 

  5. Yu CM, Chan JY, Zhang Q, Omar R, Yip GW, Hussin A, Fang F, Lam KH, Chan HC, Fung JW (2009) Biventricular pacing in patients with bradycardia and normal ejection fraction. N Engl J Med 361:2123–2134

    Article  PubMed  Google Scholar 

  6. Chan JY, Fang F, Zhang Q, Fung JW, Razali O, Azlan H, Lam KH, Chan HC, Yu CM (2011) Biventricular pacing is superior to right ventricular pacing in bradycardia patients with preserved systolic function: 2-year results of the pace trial. Eur Heart J 32:2533–2540

    Article  PubMed  Google Scholar 

  7. Nielsen OW, Hilden J, Larsen CT, Hansen JF (2001) Cross sectional study estimating prevalence of heart failure and left ventricular systolic dysfunction in community patients at risk. Heart 86:172–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Mosterd A, Hoes AW, de Bruyne MC, Deckers JW, Linker DT, Hofman A, Grobbee DE (1999) Prevalence of heart failure and left ventricular dysfunction in the general population; the rotterdam study. Eur Heart J 20:447–455

    Article  CAS  PubMed  Google Scholar 

  9. Thackray SD, Witte KK, Nikitin NP, Clark AL, Kaye GC, Cleland JG (2003) The prevalence of heart failure and asymptomatic left ventricular systolic dysfunction in a typical regional pacemaker population. Eur Heart J 24:1143–1152

    Article  PubMed  Google Scholar 

  10. Rosenqvist M, Brandt J, Schüller H (1988) Long-term pacing in sinus node disease: effects of stimulation mode on cardiovascular morbidity and mortality. Am Heart J 116:16–22

    Article  CAS  PubMed  Google Scholar 

  11. Zhang XH, Chen H, Siu CW, Yiu KH, Chan WS, Lee KL, Chan HW, Lee SW, Fu GS, Lau CP, Tse HF (2008) New-onset heart failure after permanent right ventricular apical pacing in patients with acquired high-grade atrioventricular block and normal left ventricular function. J Cardiovasc Electrophysiol 19:136–141

    Article  PubMed  Google Scholar 

  12. Sweeney MO, Prinzen FW (2008) Ventricular pump function and pacing: physiological and clinical integration. Circ Arrhythm Electrophysiol 1:127–139

    Article  PubMed  Google Scholar 

  13. Kachboura S, Ben Halima A, Fersi I, Marrakchi S, Zouaoui W, Kammoun I. Assessment of heart failure and left ventricular systolic dysfunction after cardiac pacing in patients with preserved left ventricular systolic function

  14. O’Keefe JH, Abuissa H, Jones PG, Thompson RC, Bateman TM, McGhie AI, Ramza BM, Steinhaus DM (2005) Effect of chronic right ventricular apical pacing on left ventricular function. Am J Cardiol 95:771–773

    Article  PubMed  Google Scholar 

  15. Sweeney MO, Hellkamp AS (2006) Heart failure during cardiac pacing. Circulation 113:2082–2088

    Article  PubMed  Google Scholar 

  16. Dreger H, Maethner K, Bondke H, Baumann G, Melzer C (2012) Pacing-induced cardiomyopathy in patients with right ventricular stimulation for > 15 years. Europace 14:238–242

    Article  PubMed  Google Scholar 

  17. Fang F, Chan JY, Yip GW, Xie JM, Zhang Q, Fung JW, Lam YY, Yu CM (2010) Prevalence and determinants of left ventricular systolic dyssynchrony in patients with normal ejection fraction received right ventricular apical pacing: a real-time three-dimensional echocardiographic study. Eur J Echocardiogr 11:109–118

    Article  PubMed  Google Scholar 

  18. van Geldorp IE, Delhaas T, Gebauer RA, Frias P, Tomaske M, Friedberg MK, Tisma-Dupanovic S, Elders J, Früh A, Gabbarini F, Kubuš P, Illikova V, Tsao S, Blank AC, Hiippala A, Sluysmans T, Karpawich P, Clur S-A, Ganame X, Collins KK, Dann G, Thambo J-B, Trigo C, Nagel B, Papagiannis J, Rackowitz A, Marek J, Nürnberg J-H, Vanagt WY, Prinzen FW, Janousek J (2011) Cardiology ftWGfCDaEotAfEP. Impact of the permanent ventricular pacing site on left ventricular function in children: a retrospective multicentre survey. Heart 97:2051–2055

    Article  PubMed  Google Scholar 

  19. Glotzer TV, Hellkamp AS, Zimmerman J, Sweeney MO, Yee R, Marinchak R, Cook J, Paraschos A, Love J, Radoslovich G, Lee KL, Lamas GA, Investigators M (2003) Atrial high rate episodes detected by pacemaker diagnostics predict death and stroke: report of the atrial diagnostics ancillary study of the mode selection trial (most). Circulation 107:1614–1619

    Article  PubMed  Google Scholar 

  20. Park HE, Kim JH, Kim HK, Lee SP, Choi EK, Kim YJ, Oh S, Cho GY, Sohn DW (2012) Ventricular dyssynchrony of idiopathic versus pacing-induced left bundle branch block and its prognostic effect in patients with preserved left ventricular systolic function. Am J Cardiol 109:556–562

    Article  PubMed  Google Scholar 

  21. Ghani A, Delnoy PP, Ottervanger JP, Ramdat Misier AR, Smit JJ, Elvan A (2011) Assessment of left ventricular dyssynchrony in pacing-induced left bundle branch block compared with intrinsic left bundle branch block. Europace. 13:1504–1507

    Article  PubMed  Google Scholar 

  22. Witte KK, Pipes RR, Nanthakumar K, Parker JD (2006) Biventricular pacemaker upgrade in previously paced heart failure patients–improvements in ventricular dyssynchrony. J Card Fail 12:199–204

    Article  PubMed  Google Scholar 

  23. Xiao HB, Brecker SJ, Gibson DG (1993) Differing effects of right ventricular pacing and left bundle branch block on left ventricular function. Br Heart J 69:166–173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Tops LF, Schalij MJ, Bax JJ

  25. Manolis AS. The deleterious consequences of right ventricular apical pacing: time to seek alternate site pacing

  26. Tanaka H, Hara H, Adelstein EC, Schwartzman D, Saba S, GorcsanIii J (2010) Comparative mechanical activation mapping of rv pacing to lbbb by 2d and 3d speckle tracking and association with response to resynchronization therapy. JACC: Cardiovasc Imaging 3:461–471

    Article  Google Scholar 

  27. Tops LF, Suffoletto MS, Bleeker GB, Boersma E, van der Wall EE, Gorcsan J, Schalij MJ, Bax JJ (2007) Speckle-tracking radial strain reveals left ventricular dyssynchrony in patients with permanent right ventricular pacing. J Am Coll Cardiol 50:1180–1188

    Article  PubMed  Google Scholar 

  28. Delgado V, Tops LF, Trines SA, Zeppenfeld K, Marsan NA, Bertini M, Holman ER, Schalij MJ, Bax JJ (2009) Acute effects of right ventricular apical pacing on left ventricular synchrony and mechanics. Circ Arrhythm Electrophysiol 2:135–145

    Article  PubMed  Google Scholar 

  29. van Oosterhout MF, Prinzen FW, Arts T, Schreuder JJ, Vanagt WY, Cleutjens JP, Reneman RS (1998) Asynchronous electrical activation induces asymmetrical hypertrophy of the left ventricular wall. Circulation 98:588–595

    Article  PubMed  Google Scholar 

  30. Prinzen FW, Cheriex EC, Delhaas T, van Oosterhout MF, Arts T, Wellens HJ, Reneman RS (1995) Asymmetric thickness of the left ventricular wall resulting from asynchronous electric activation: a study in dogs with ventricular pacing and in patients with left bundle branch block. Am Heart J 130:1045–1053

    Article  CAS  PubMed  Google Scholar 

  31. Hung-Fat T, Chu-Pak L (1997) Long-term effect of right ventricular pacing on myocardial perfusion and function. J Am Coll Cardiol 29:744–749

    Article  Google Scholar 

  32. Skalidis EI, Kochiadakis GE, Koukouraki SI, Chrysostomakis SI, Igoumenidis NE, Karkavitsas NS, Vardas PE (2001) Myocardial perfusion in patients with permanent ventricular pacing and normal coronary arteries. J Am Coll Cardiol 37:124–129

    Article  CAS  PubMed  Google Scholar 

  33. Prinzen F, Arts T, McVeigh E, Hunter W, Reneman R (1996) Contraction and blood flow patterns in the left ventricle during abnormal electrical activation

  34. Marketou ME, Simantirakis EN, Prassopoulos VK, Chrysostomakis SI, Velidaki AA, Karkavitsas NS, Vardas PE (2002) Assessment of myocardial adrenergic innervation in patients with sick sinus syndrome: effect of asynchronous ventricular activation from ventricular apical stimulation. Heart 88:255–259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Yoshida H, Shirotani M, Mochizuki M, Sakata K (1999) Assessment of myocardial fatty acid metabolism in atrioventricular synchronous pacing: analysis of iodine 123-labeled beta-methyl iodophenyl pentadecanoic acid spect. J nucl cardiol 6:33–40

    Article  CAS  PubMed  Google Scholar 

  36. Marketou ME, Simantirakis EN, Nikitovic D, Chrysostomakis SI, Zacharis EA, Vardas PE (2005) Impact of asynchronous ventricular activation on pro-inflammatory cytokines and oxidative stress in paced patients. Heart 91:817–818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lee MA, Dae MW, Langberg JJ, Griffin JC, Chin MC, Finkbeiner WE, O’Connell JW, Botvinick E, Scheinman MM, Rosenqvist M (1994) Effects of long-term right ventricular apical pacing on left ventricular perfusion, innervation, function and histology. J Am Coll Cardiol 24:225–232

    Article  CAS  PubMed  Google Scholar 

  38. Moore L, Fan D, Basu R, Kandalam V, Kassiri Z (2011) Tissue inhibitor of metalloproteinases (timps) in heart failure. Heart Fail Rev

  39. Karpawich PP, Justice CD, Cavitt DL, Chang C-H (1990) Developmental sequelae of fixed-rate ventricular pacing in the immature canine heart: an electrophysiologic, hemodynamic, and histopathologic evaluation. Am Heart J 119:1077–1083

    Article  CAS  PubMed  Google Scholar 

  40. Adomian GE, Beazell J (1986) Myofibrillar disarray produced in normal hearts by chronic electrical pacing. Am Heart J 112:79–83

    Article  CAS  PubMed  Google Scholar 

  41. Karpawich PP, Rabah R, Haas JE (1999) Altered cardiac histology following apical right ventricular pacing in patients with congenital atrioventricular block. Pacing Clin Electrophysiol 22:1372–1377

    Article  CAS  PubMed  Google Scholar 

  42. Klug D, Boule S, Wissocque L, Montaigne D, Marechal X, Hassoun SM, Neviere R (2012) Right ventricular pacing with mechanical dyssynchrony causes apoptosis interruptus and calcium mishandling. Can J Cardiol

  43. Liu Y, Cigola E, Cheng W, Kajstura J, Olivetti G, Hintze TH, Anversa P (1995) Myocyte nuclear mitotic division and programmed myocyte cell death characterize the cardiac myopathy induced by rapid ventricular pacing in dogs. Lab Invest 73:771–787

    CAS  PubMed  Google Scholar 

  44. Heinke MY, Yao M, Chang D, Einstein R, dos Remedios CG (2001) Apoptosis of ventricular and atrial myocytes from pacing-induced canine heart failure. Cardiovasc Res 49:127–134

    Article  CAS  PubMed  Google Scholar 

  45. Lee RT, Libby P (2000) Matrix metalloproteinases: not-so-innocent bystanders in heart failure. J Clin Invest 106:827–828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Kassiri Z, Khokha R (2005) Myocardial extra-cellular matrix and its regulation by metalloproteinases and their inhibitors. Thromb Haemost 93:212–219

    CAS  PubMed  Google Scholar 

  47. Porter KE, Turner NA. Cardiac fibroblasts: At the heart of myocardial remodeling

  48. Jugdutt BI (2003) Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Curr Drug Targets Cardiovasc Haematol Disord 3:1–30

    Article  CAS  PubMed  Google Scholar 

  49. Rosenkranz S (2004) Tgf-β1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 63:423–432

    Article  CAS  PubMed  Google Scholar 

  50. Li YY, McTiernan CF, Feldman AM (1999) Proinflammatory cytokines regulate tissue inhibitors of metalloproteinases and disintegrin metalloproteinase in cardiac cells. Cardiovasc Res 42:162–172

    Article  CAS  PubMed  Google Scholar 

  51. Siwik DA, Chang DL, Colucci WS (2000) Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res 86:1259–1265

    Article  CAS  PubMed  Google Scholar 

  52. Sundström J, Evans JC, Benjamin EJ, Levy D, Larson MG, Sawyer DB, Siwik DA, Colucci WS, Wilson PW, Vasan RS (2004) Relations of plasma total timp-1 levels to cardiovascular risk factors and echocardiographic measures: the framingham heart study. Eur Heart J 25:1509–1516

    Article  PubMed  Google Scholar 

  53. Bradham WS, Moe G, Wendt KA, Scott AA, Konig A, Romanova M, Naik G, Spinale FG (2002) Tnf-α and myocardial matrix metalloproteinases in heart failure: relationship to lv remodeling. Am J Physiol Heart Circ Physiol 282:H1288–H1295

    CAS  PubMed  Google Scholar 

  54. Vu TH, Werb Z (2000) Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 14:2123–2133

    Article  CAS  PubMed  Google Scholar 

  55. Spinale FG (1999) Novel approaches to retard ventricular remodeling in heart failure. Eur J Heart Fail 1:17–23

    Article  CAS  PubMed  Google Scholar 

  56. Spinale FG (1999) Novel approaches to retard ventricular remodeling in heart failure. Eur J Heart Fail 1:17–23

    Article  CAS  PubMed  Google Scholar 

  57. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and timps. Cardiovasc Res 69:562–573

    Article  CAS  PubMed  Google Scholar 

  58. Barton PJ, Birks EJ, Felkin LE, Cullen ME, Koban MU, Yacoub MH (2003) Increased expression of extracellular matrix regulators timp1 and mmp1 in deteriorating heart failure. J Heart Lung Transplant 22:738–744

    Article  PubMed  Google Scholar 

  59. Spinale FG, Coker ML, Heung LJ, Bond BR, Gunasinghe HR, Etoh T, Goldberg AT, Zellner JL, Crumbley AJ (2000) A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation 102:1944–1949

    Article  CAS  PubMed  Google Scholar 

  60. Spinale FG (2002) Matrix metalloproteinases. Circ Res 90:520–530

    Article  CAS  PubMed  Google Scholar 

  61. Heymans S, Schroen B, Vermeersch P, Milting H, Gao F, Kassner A, Gillijns H, Herijgers P, Flameng W, Carmeliet P, Van de Werf F, Pinto YM, Janssens S (2005) Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. Circulation 112:1136–1144

    Article  CAS  PubMed  Google Scholar 

  62. Rouet-Benzineb P, Buhler JM, Dreyfus P, Delcourt A, Dorent R, Perennec J, Crozatier B, Harf A, Lafuma C (1999) Altered balance between matrix gelatinases (mmp-2 and mmp-9) and their tissue inhibitors in human dilated cardiomyopathy: potential role of mmp-9 in myosin-heavy chain degradation. Eur J Heart Fail 1:337–352

    Article  CAS  PubMed  Google Scholar 

  63. Spinale FG, Coker ML, Bond BR, Zellner JL (2000) Myocardial matrix degradation and metalloproteinase activation in the failing heart: a potential therapeutic target. Cardiovasc Res 46:225–238

    Article  CAS  PubMed  Google Scholar 

  64. Sadoshima J, Montagne O, Wang Q, Yang G, Warden J, Liu J et al (2002) The mekk1-jnk pathway plays a protective role in pressure overload but does not mediate cardiac hypertrophy. J Clin Invest 110:271–279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Martos R, Baugh J, Ledwidge M, O’Loughlin C, Murphy NF, Conlon C, Patle A, Donnelly SC, McDonald K (2009) Diagnosis of heart failure with preserved ejection fraction: improved accuracy with the use of markers of collagen turnover. Eur J Heart Fail 11:191–197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Manhenke C, Orn S, Squire I, Radauceanu A, Alla F, Zannad F, Dickstein K (2011) The prognostic value of circulating markers of collagen turnover after acute myocardial infarction. Int J Cardiol 150:277–282

    Article  PubMed  Google Scholar 

  67. Li YY, Feldman AM, Sun Y, McTiernan CF (1998) Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 98:1728–1734

    Article  CAS  PubMed  Google Scholar 

  68. Thomas CV, Coker ML, Zellner JL, Handy JR, Crumbley AJ, Spinale FG (1998) Increased matrix metalloproteinase activity and selective upregulation in lv myocardium from patients with end-stage dilated cardiomyopathy. Circulation 97:1708–1715

    Article  CAS  PubMed  Google Scholar 

  69. Noji Y, Shimizu M, Ino H, Higashikata T, Yamaguchi M, Nohara A, Horita T, Shimizu K, Ito Y, Matsuda T, Namura M, Mabuchi H (2004) Increased circulating matrix metalloproteinase-2 in patients with hypertrophic cardiomyopathy with systolic dysfunction. Circ J 68:355–360

    Article  CAS  PubMed  Google Scholar 

  70. Timms PM, Wright A, Maxwell P, Campbell S, Dawnay AB, Srikanthan V (2002) Plasma tissue inhibitor of metalloproteinase-1 levels are elevated in essential hypertension and related to left ventricular hypertrophy. Am J Hypertens 15:269–272

    Article  CAS  PubMed  Google Scholar 

  71. Mukherjee R, Herron AR, Lowry AS, Stroud RE, Stroud MR, Wharton JM, Ikonomidis JS, Crumbley AJ, Spinale FG, Gold MR (2006) Selective induction of matrix metalloproteinases and tissue inhibitor of metalloproteinases in atrial and ventricular myocardium in patients with atrial fibrillation. Am J Cardiol 97:532–537

    Article  CAS  PubMed  Google Scholar 

  72. Al-Hesayen A, Parker JD (2006) Adverse effects of atrioventricular synchronous right ventricular pacing on left ventricular sympathetic activity, efficiency, and hemodynamic status. Am J Physiol Heart Circ Physiol 291:H2377–H2379

    Article  CAS  PubMed  Google Scholar 

  73. King MK, Coker ML, Goldberg A, McElmurray JH, Gunasinghe HR, Mukherjee R, Zile MR, O’Neill TP, Spinale FG (2003) Selective matrix metalloproteinase inhibition with developing heart failure: effects on left ventricular function and structure. Circ Res 92:177–185

    Article  CAS  PubMed  Google Scholar 

  74. Birkedal-Hansen H, Moore WGI, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, Engler JA (1993) Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 4:197–250

    CAS  PubMed  Google Scholar 

  75. Cheng C-P, Suzuki M, Ohte N, Ohno M, Wang Z-M, Little WC (1996) Altered ventricular and myocyte response to angiotensin ii in pacing-induced heart failure. Circ Res 78:880–892

    Article  CAS  PubMed  Google Scholar 

  76. Torre-Amione G, Kapadia S, Lee J, Durand J-B, Bies RD, Young JB, Mann DL (1996) Tumor necrosis factor-α and tumor necrosis factor receptors in the failing human heart. Circulation 93:704–711

    Article  CAS  PubMed  Google Scholar 

  77. Awad AE, Kandalam V, Chakrabarti S, Wang X, Penninger JM, Davidge ST, Oudit GY, Kassiri Z (2010) Tumor necrosis factor induces matrix metalloproteinases in cardiomyocytes and cardiofibroblasts differentially via superoxide production in a pi3kgamma-dependent manner. Am J Physiol Cell Physiol 298:C679–C692

    Article  CAS  PubMed  Google Scholar 

  78. Sivasubramanian N, Coker ML, Kurrelmeyer KM, MacLellan WR, DeMayo FJ, Spinale FG, Mann DL (2001) Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation 104:826–831

    Article  CAS  PubMed  Google Scholar 

  79. Tyagi SC, Lewis K, Pikes D, Marcello A, Mujumdar VS, Smiley LM, Moore CK (1998) Stretch-induced membrane type matrix metalloproteinase and tissue plasminogen activator in cardiac fibroblast cells. J Cell Physiol 176:374–382

    Article  CAS  PubMed  Google Scholar 

  80. van Empel VPM, Bertrand ATA, Hofstra L, Crijns HJ, Doevendans PA, De Windt LJ (2005) Myocyte apoptosis in heart failure. Cardiovasc Res 67:21–29

    Article  PubMed  Google Scholar 

  81. Shinbane JS, Wood MA, Jensen DN, Ellenbogen KA, Fitzpatrick AP, Scheinman MM (1997) Tachycardia-induced cardiomyopathy: a review of animal models and clinical studies. J Am Coll Cardiol 29:709–715

    Article  CAS  PubMed  Google Scholar 

  82. Lin JM, Lai LP, Lin CS, Chou NK, Chiu CY, Lin JL (2010) Left ventricular extracellular matrix remodeling in dogs with right ventricular apical pacing. J Cardiovasc Electrophysiol 21:1142–1149

    Article  PubMed  Google Scholar 

  83. Salameh A, Dhein S, Blanke K, Rastan A, Hiyasat B, Dietze A, Sobiraij A, Dahnert I, Janousek J (2012) Right or left ventricular pacing in young minipigs with chronic atrioventricular block: Long-term in vivo cardiac performance, morphology, electrophysiology, and cellular biology. Circulation 2578-2587

  84. Yamazaki KG, Villarreal FJ (2011) Ventricular pacing-induced loss of contractile function and development of epicardial inflammation. Am J Physiol Heart Circ Physiol 300:H1282–H1290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Spinale FG, Coker ML, Krombach SR, Mukherjee R, Hallak H, Houck WV, Clair MJ, Kribbs SB, Johnson LL, Peterson JT, Zile MR (1999) Matrix metalloproteinase inhibition during the development of congestive heart failure: effects on left ventricular dimensions and function. Circ Res 85:364–376

    Article  CAS  PubMed  Google Scholar 

  86. Hudson MP, Armstrong PW, Ruzyllo W, Brum J, Cusmano L, Krzeski P, Lyon R, Quinones M, Theroux P, Sydlowski D, Kim HE, Garcia MJ, Jaber WA, Weaver WD (2006) Effects of selective matrix metalloproteinase inhibitor (pg-116800) to prevent ventricular remodeling after myocardial infarction: results of the premier (prevention of myocardial infarction early remodeling) trial. J Am Coll Cardiol 48:15–20

    Article  CAS  PubMed  Google Scholar 

  87. Reinhardt D, Sigusch H, Hensse J, Tyagi S, Korfer R, Figulla H (2002) Cardiac remodelling in end stage heart failure: upregulation of matrix metalloproteinase (mmp) irrespective of the underlying disease, and evidence for a direct inhibitory effect of ace inhibitors on mmp. Heart 88:525–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Sakata Y, Yamamoto K, Mano T, Nishikawa N, Yoshida J, Hori M, Miwa T, Masuyama T (2004) Activation of matrix metalloproteinases precedes left ventricular remodeling in hypertensive heart failure rats: its inhibition as a primary effect of angiotensin-converting enzyme inhibitor. Circulation 109:2143–2149

    Article  CAS  PubMed  Google Scholar 

  89. Coker ML, Thomas CV, Clair MJ, Hendrick JW, Krombach RS, Galis ZS, Spinale FG (1998) Myocardial matrix metalloproteinase activity and abundance with congestive heart failure. Am J Physiol 274:H1516–H1523

    CAS  PubMed  Google Scholar 

  90. Johnston CI, Fabris B, Yamada H, Mendelsohn FA, Cubela R, Sivell D, Jackson B (1989) Comparative studies of tissue inhibition by angiotensin converting enzyme inhibitors. J Hypertens Suppl 7:S11–S16

    Article  CAS  PubMed  Google Scholar 

  91. Karpawich PP, Justice CD, Chang CH, Gause CY, Kuhns LR (1991) Septal ventricular pacing in the immature canine heart: a new perspective. Am Heart J 121:827–833

    Article  CAS  PubMed  Google Scholar 

  92. Tse HF, Yu C, Wong KK, Tsang V, Leung YL, Ho WY, Lau CP (2002) Functional abnormalities in patients with permanent right ventricular pacing: the effect of sites of electrical stimulation. J Am Coll Cardiol 40:1451–1458

    Article  PubMed  Google Scholar 

  93. Kaye G, Stambler BS, Yee R (2009) Search for the optimal right ventricular pacing site: design and implementation of three randomized multicenter clinical trials. Pacing Clin Electrophysiol 32:426–433

    Article  PubMed  Google Scholar 

  94. Funck RC, Blanc JJ, Mueller HH, Schade-Brittinger C, Bailleul C, Maisch B, Group BS (2006) Biventricular stimulation to prevent cardiac desynchronization: rationale, design, and endpoints of the ‘biventricular pacing for atrioventricular block to prevent cardiac desynchronization (biopace)’ study. Europace 8:629–635

    Article  PubMed  Google Scholar 

  95. van Oosterhout MF, Arts T, Bassingthwaighte JB, Reneman RS, Prinzen FW (2002) Relation between local myocardial growth and blood flow during chronic ventricular pacing. Cardiovasc Res 53:831–840

    Article  PubMed  Google Scholar 

  96. Schmidt M, Brömsen J, Herholz C, Adler K, Neff F, Kopf C, Block M (2007) Evidence of left ventricular dyssynchrony resulting from right ventricular pacing in patients with severely depressed left ventricular ejection fraction. Europace 9:34–40

    Article  PubMed  Google Scholar 

  97. Pastore G, Noventa F, Piovesana P, Cazzin R, Aggio S, Verlato R, Zanon F, Baracca E, Roncon L, Padeletti L, Barold SS (2008) Left ventricular dyssynchrony resulting from right ventricular apical pacing: relevance of baseline assessment. Pacing Clin Electrophysiol 31:1456–1462

    Article  PubMed  Google Scholar 

  98. Connolly SJ, Kerr CR, Gent M, Roberts RS, Yusuf S, Gillis AM, et al (2000) Effects of physiologic pacing versus ventricular pacing on the risk of stroke and death due to cardiovascular causes. Canadian Trial of Physiologic Pacing Investigators. N Engl J Med 342:1385–1391

    Google Scholar 

  99. Skanes AC, Krahn AD, Yee R, Klein GJ, Connolly SJ, Kerr CR, Gent M, Thorpe KE, Roberts RS (2001) Progression to chronic atrial fibrillation after pacing: the Canadian Trial of Physiologic Pacing. CTOPP Investigators. J Am Coll Cardiol 38(1):167–172

    Google Scholar 

  100. Sgarbossa EB, Pinski SL, Maloney JD (1993) The role of pacing modality in determining long‐term survival in the sick sinus syndrome. Ann Intern Med 119(5):359–365

    Google Scholar 

  101. Andersen HR, Nielsen JC, Thomsen PE, Thuesen L, Mortensen PT, Vesterlund T, Pedersen AK (1997) Long term follow up of patients from a randomised trial of atrial versus ventricular pacing for sick‐sinus syndrome. Lancet 350(9086):1210–1216

    Google Scholar 

  102. Thambo JB, Bordachar P, Garrigue S, Lafitte S, Sanders P, Reuter S, Girardot R, Crepin D, Reant P, Roudaut R, Jaïs P, Haïssaguerre M, Clementy J, Jimenez M (2004) Detrimental ventricular remodeling in patients with congenital complete heart block and chronic right ventricular apical pacing. Circulation 110(25):3766–3772

    Google Scholar 

Download references

Acknowledgments

F.A. is supported by a research grant funded by Medtronic.

Conflict of interest

F.A. has received sponsorship from Boston Scientific to attend educational meetings. F.A. and A.Z. have received research funding and sponsorship to attend educational meetings from Medtronic. R.S.K., L.N., D.O. and M.M. have no competing interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fozia Z. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, F.Z., Khattar, R.S., Zaidi, A.M. et al. Pacing-induced cardiomyopathy: pathophysiological insights through matrix metalloproteinases. Heart Fail Rev 19, 669–680 (2014). https://doi.org/10.1007/s10741-013-9390-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-013-9390-y

Keywords

Navigation