Skip to main content

Advertisement

Log in

The nerve-heart connection in the pro-oxidant response to Mg-deficiency

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Magnesium is a micronutrient essential for the normal functioning of the cardiovascular system, and Mg deficiency (MgD) is frequently associated in the clinical setting with chronic pathologies such as CHF, diabetes, hypertension, and other pathologies. Animal models of MgD have demonstrated a systemic pro-inflammatory/pro-oxidant state, involving multiple tissues/organs including neuronal, hematopoietic, cardiovascular, and gastrointestinal systems; during later stages of MgD, a cardiomyopathy develops which may result from a cascade of inflammatory events. In rodent models of dietary MgD, a significant rise in circulating levels of proinflammatory neuropeptides such as substance P (SP) and calcitonin gene-related peptide among others, was observed within days (1–7) of initiating the Mg-restricted diet, and implicated a neurogenic trigger for the subsequent inflammatory events; this early “neurogenic inflammation” phase may be mediated in part, by the Mg-gated N-methyl-D-aspartate (NMDA) receptor/channel complex. Deregulation of the NMDA receptor may trigger the abrupt release of neuronal SP from the sensory-motor C-fibers to promote the subsequent pro-inflammatory changes: elevations in circulating inflammatory cells, inflammatory cytokines, histamine, and PGE2 levels, as well as formation of nitric oxide, reactive oxygen species, lipid peroxidation products, and depletion of key endogenous antioxidants. Concurrent elevations of tissue CD14, a high affinity receptor for lipopolyssacharide, suggest that intestinal permeability may be compromised leading to endotoxemia. If exposure to these early (1–3 weeks MgD) inflammatory/pro-oxidant events becomes prolonged, this might lead to impaired cardiac function, and when co-existing with other pathologies, may enhance the risk of developing chronic heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lichton IJ. Dietary intake levels and requirements of Mg and Ca for different segments of the U.S. population. Magnesium 1989;8:117–23

    PubMed  CAS  Google Scholar 

  2. Pao EM, Mickle SJ. Problem nutrients in the United States. Food Technol 1981;35:58–69

    Google Scholar 

  3. National Research Council, Recommended dietary allowances, Washington, DC, National Academy Press, 1999

    Google Scholar 

  4. Leary WP. Content of magnesium in drinking water and deaths from ischaemic heart disease in white south Africans. Magnesium 1986;5:150–3

    PubMed  CAS  Google Scholar 

  5. Punsar S, Karvonen MJ. Drinking water quality and sudden death: Observations from west and east Finland. J Am Coll Nutr 1985;4:195–206

    Google Scholar 

  6. Rylander R, Bonevik H, Rubenowitz E. Magnesium and calcium in drinking water and cardiovascular mortality. Scand J Work Environ Health 1991;17:91–4

    PubMed  CAS  Google Scholar 

  7. Anderson TW, Neri LC, Schreiberg HD. Ischaemic heart disease, water hardness and myocardial magnesium. Can Med Assoc J 1975;113:199–203

    PubMed  CAS  Google Scholar 

  8. Altura BT, Wilimizig C, Trnovec T, Nyulassy S, Altura BM. Comparative effects of a Mg-enriched diet and different orally administered magnesium oxide preparations on ionized Mg, Mg metabolism and electrolytes in serum of human volunteers. J Am Coll Nutr 1994;13:447–54

    PubMed  CAS  Google Scholar 

  9. Vormann J, Fischer G, Classen H-G, Thioni H. Influence of decreased and increased magnesium supply on the cardiotoxic effects of epinephrine in rats. Arzneimitteltorschung 1983;33:205–10

    CAS  Google Scholar 

  10. Seelig M. Cardiovascular consequences of magnesium deficiency and loss: Pathogenesis, prevalence and manifestations –Magnesium and chloride loss in refractory potassium repletion. Am J Cardiol 1989;63:4G–21G

    Article  PubMed  CAS  Google Scholar 

  11. Altura BM, Altura BT. New perspective on the role of Mg in the pathophysiology of the cardiovascular system. 1. Clinical aspects. Magnesium 1985;4:226–44

    PubMed  CAS  Google Scholar 

  12. Dubey A, Solomon R. Magnesium, myocardial ischaemia and arrhythmias: The role of magnesium in myocardial infarction. Drugs 1989;37:1–7

    Article  PubMed  CAS  Google Scholar 

  13. Weglicki WB, Phillips TM. Pathobiology of magnesium deficiency: a cytokine/neurogenic inflammation hypothesis. Am J Physiol 1992;263:R734–7

    PubMed  CAS  Google Scholar 

  14. Gums JG. Magnesium in cardiovascular and other disorders. Am J Health-Syst Pharm 2004;61:1569–76

    PubMed  CAS  Google Scholar 

  15. Hartwig A. Role of magnesium in genomic stability. Mutation Research 2001;475:113–21

    PubMed  CAS  Google Scholar 

  16. Weglicki WB, Mak IT, Kramer JH, Dickens BF, Cassidy MM, Stafford RE, Phillips TM. Role of free radicals and substance P in magnesium deficiency. Cardiovasc Res 1996;31:677–82

    Article  PubMed  CAS  Google Scholar 

  17. Weglicki WB, Phillips TM, Freedman AM, Cassidy MM, Dickens BF. Magnesium-Deficiency elevates circulating levels of inflammatory cytokines and endothelin. Mol Cell Biochem 1992;110:169–73

    PubMed  CAS  Google Scholar 

  18. Chmielinska JJ, Tejero-Taldo MI, Mak IT, Weglicki WB. Intestinal and cardiac inflammatory response shows enhanced endotoxin receptor (Cd14) expression in magnesium deficiency. Mol Cell Biochem 2005;278:53–7

    Article  PubMed  CAS  Google Scholar 

  19. Persson MG, Hedqvist P, Gustafsson LE. Nerve-induced tachykinin-mediated vasodilation in skeletal muscle is dependent on nitric oxide formation. Eur J Pharmacol 1991;205:295–301

    Article  PubMed  CAS  Google Scholar 

  20. Kramer JH, Dadgar S, Weglicki WB. Severity and duration of dietary Mg-restriction influences normal cardiac performance and tolerance to I/R stress (abstract). J Mol Cell Cardiol 2005;38:832

    Google Scholar 

  21. Baumgarten G, Knuefermann P, Nozaki N, Sivasubramanian N, Mann DL, Vallejo JG. In vivo expression of proinflammatory mediators in the adult heart after endotoxin administration: the role of toll-like receptor-4. J Infect Dis 2001;183:1617–24

    Article  PubMed  CAS  Google Scholar 

  22. Dickerson C, Undem B, Bullock B, Winchurch RA. Neuropeptide regulation of proinflammatory cytokine responses. J Leukoc Biol 1998;63:602–5

    PubMed  CAS  Google Scholar 

  23. Weglicki WB, Phillips TM, Mak IT, Cassidy MM, Dickens BF, Stafford RE, Kramer JH. Cytokines, neuropeptides, and reperfusion injury during magnesium deficiency. Ann NY Acad Sci 1994;723:246–57

    PubMed  CAS  Google Scholar 

  24. Kramer JH, Phillips TM, Weglicki WB. Magnesium-deficiency enhanced postischemic myocardial injury is reduced by substance P receptor blockade. J Mol Cell Cardiol 1997;29:97–110

    Article  PubMed  CAS  Google Scholar 

  25. Mantyh PW. Substance P and the inflammatory and immune response. Ann NY Acad Sci 1991;632:263–71

    PubMed  CAS  Google Scholar 

  26. Bost KL, Pascual DW. Substance P: A late-acting B lymphocyte differentiation cofactor. Am J Physiol Cell Physiol 1992;262:C537–45

    CAS  Google Scholar 

  27. Weglicki WB, Mak IT, Stafford RE, Dickens BF, Cassidy MM, Phillips TM. Neurogenic peptides and the cardiomyopathy of Mg-deficiency: Effects of substance P-receptor inhibition. Mol Cell Biochem 1994;130:103–9

    Article  PubMed  CAS  Google Scholar 

  28. Weglicki WB, Mak IT, Phillips TM. Blockade of cardiac inflammation in Mg-deficiency by substance P receptor inhibition. Circ Res 1994;24:1009–13

    Google Scholar 

  29. Weglicki WB, Dickens BF, Mak IT, Kramer JH, Stafford RE, Cassidy MM, Phillips TM. Pathophysiology of Heart Failure, Boston: Kluwer Academic Publishers, 1995:9–190

    Google Scholar 

  30. Furness JB, Costa M, Papka RE, Della NG, Murphy R. Neuropeptides contained in peripheral cardiovascular nerves. Clin Exp Hypertens 1984;6:91–106

    CAS  Google Scholar 

  31. Rude RK, Gruber HE, Norton HJ, Wei LY, Frausto A, Mill BG. Bone loss induced by dietary magnesium reduction to 10% of the nutrient requirement in rats is associated with increased release of substance P and tumor necrosis-alpha. J Nutr 2004;134:79–85

    PubMed  CAS  Google Scholar 

  32. Leeman SE. Substance P and neurotensin: discovery, isolation, chemical characterization and physiological studies. J Exp Biol 1980;89:193–200

    PubMed  CAS  Google Scholar 

  33. Kramer JH, Mak IT, Phillips TM, Weglicki WB. Dietary Mg-intake influence circulating pro-inflammatory neuropeptide levels and loss of myocardial tolerance to postischemic stress. Exp Biol Med 2003;228:665–73

    CAS  Google Scholar 

  34. Haziot A, Ferrero E, Kontgen F, Hijiya N, Yamomoto S, Silver J, Stewart CL, Goyert SM. Resistance to endotoxin shock and reduced dissemination of Gram-negative bacteria in CD14 deficient mice. Immunity 1996;4:407–14

    Article  PubMed  CAS  Google Scholar 

  35. Phillips TM, Kramer JH, Weglicki WB. NK-1 receptor antagonist modulates Mg-Deficiency-induced myocardial inflammation. FASEB J 1996;10:A322

    Google Scholar 

  36. Atrakchi AH, Bloom S, Dickens BF, Mak IT, Weglicki WB. Hypomagnesemia and isoproterenol cardiomyopathies: Protection by probucol. J Cardiovas Pathol 1992;1:155–60

    Article  CAS  Google Scholar 

  37. Freedman AM, Atrakchi AH, Cassidy MM, Weglicki WB. Magnesium deficiency-induced cardiomyopathy: Protection by vitamin E. Biochem Biophys Res Commun 1990;170:1102–6

    Article  PubMed  CAS  Google Scholar 

  38. Weglicki WB, Freedman AM, Bloom S, Atrakchi AH, Cassidy MM, Dickens BF, Mak IT. Antioxidants and the cardiomyopathy of Mg-deficiency. Am J Cardiovasc Pathol 1992;4:210–15

    PubMed  CAS  Google Scholar 

  39. Weglicki WB, Stafford RE, Cassidy MM, Phillips TM. Modulation of cytokines and cardiomyopathic lesions in a magnesium-deficient rodent model: effects of vitamin E and chloroquine. Am J Physiol 1993;264:C723–6

    PubMed  CAS  Google Scholar 

  40. Freedman AM, Cassidy MM, Weglicki WB. Propranolol reduces cardiomyopathic injury induced by magnesium deficiency. Magnes Trace Elem 1992;10:348–54

    CAS  Google Scholar 

  41. Hsu JM, Rubenstein B, Paleker AG. Role of magnesium in glutathione metabolism of rat erythrocytes. J Nutr 1982;112:488–96

    PubMed  CAS  Google Scholar 

  42. Mak IT, Stafford RE, Weglicki WB. Loss of red cell glutathione during Mg deficiency: prevention by vitamin E, D-propranolol, and chloroquine. Am J Physiol 1994;267:C1366–70

    PubMed  CAS  Google Scholar 

  43. Freedman AM, Mak IT, Stafford RE, Dickens BF, Cassidy MM, Muesing RA, Weglicki WB. Erythrocytes from magnesium-deficient hamsters display an enhanced susceptibility to oxidative stress. Am J Physiol Cell Physiol 1992;262:C1371–5

    CAS  Google Scholar 

  44. Weglicki W B, Kramer J H, Mak IT. The role of antioxidant drugs in oxidative injury of cardiovascular tissue. Heart Failure Reviews 1999;4:183–92

    Article  CAS  Google Scholar 

  45. Kramer JH, Misík V, Weglicki WB. Magnesium-deficiency potentiates free radical production associated with postischemic injury to rat hearts: vitamin E affords protection. Free Radic Biol Med 1994;16:713–23

    Article  PubMed  CAS  Google Scholar 

  46. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109–42

    PubMed  CAS  Google Scholar 

  47. Rubanyi GM, Ho EH, Cantor EH, Lumma WC, Botelho LHP. Cytoprotective function of nitric oxide: Inactivation of superoxide radicals produced by human leukocytes. Biochem Biophys Res Commun 1991;181:1392–7

    Article  PubMed  CAS  Google Scholar 

  48. Huie RE, Padmaja S. The reaction of NO with superoxide. Free Radic Res Commun 1993;18:195–9

    Article  PubMed  CAS  Google Scholar 

  49. Jun CD, Lee JY, Lee BS, Choi BM, Um JY, Kwak HJ, Jl KY, Kim HM, Chung HT. Generation of nitric oxide inhibits formation of superoxide in macrophages during activation. Biochem Mol Biol Int 1994;34:1–8

    PubMed  CAS  Google Scholar 

  50. Mulligan MS, Hevel JM, Marletta MA, Ward PA. Tissue injury caused by deposition of immune complexes is L-arginine dependent. Proc Natl Acad Sci USA 1991;88:6338–42

    Article  PubMed  CAS  Google Scholar 

  51. Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite oxidation of sulfhydryls. The cytosolic potential of superoxide and nitric oxide. J Biol Chem 1994;266:4244–50

    Google Scholar 

  52. Cazevieille C, Muller A, Meynier F, Bonne C. Superoxide and nitric oxide cooperation in hypoxia/reoxygenation-induced neuron injury. Free Radic Biol Med 1993;14:389–95

    Article  PubMed  CAS  Google Scholar 

  53. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production from peroxynitrite: implications for endothelial cell injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990;87:1620–24

    Article  PubMed  CAS  Google Scholar 

  54. White CR, Brock TA, Chang L-Y, Crapo J, Briscoe P, Ku D, Bradley WA, Gianturco SH, Gore J, Freeman BA, Tarpey MM. Superoxide and peroxynitrite in atherosclerosis. Proc Natl Acad Sci USA 1994;91:1044–8

    Article  PubMed  CAS  Google Scholar 

  55. Mak IT, Stafford RE, Dickens BF, Phillips TM, Weglicki WB. NO inhibition attenuates Mg-deficiency-induced oxidative injury in vivo. FASEB J 1995;9:A31

    Google Scholar 

  56. Mak IT, Komarov AM, Wagner TL, Stafford RE, Dickens BF, Weglicki WB. Enhanced nitric oxide production during Mg-deficiency and its role in mediating red cell glutathione loss. Am J Physiol 1996;271:C385–90

    PubMed  CAS  Google Scholar 

  57. Rock E, Astier C, Lab C, Malpuech C, Nowacki W, Mazur A, Rayssiguier Y. Magnesium deficiency enhances plasma nitric oxide level in the rat. Magnes Res 1995;8:237–42

    PubMed  CAS  Google Scholar 

  58. Tejero-Taldo MI, Chmielinska JJ, Weglicki WB. Magnesium deficiency stimulates angiogenesis in the rat heart. J Mol Cell Cardiol 2004;36:631

    Google Scholar 

  59. Malpuech-Brugere C, Mowachi W, Rock E, Gueux E, Mazur A, Rayssiguier Y. Enhanced tumor necrosis factor-alpha production following endotoxin challenge in rats is an early event during magnesium deficiency. Biochem Biophys Acta 1999;1453:35–40

    PubMed  CAS  Google Scholar 

  60. Szabó C, Southan GJ, Thiemermann C. Beneficial effects and improved survival in rodent models of septic shock with S-methylisothiourea sulfate, a potent and selective inhibitor of inducible nitric oxide synthase. Proc Natl Acad Sci USA 1994;91:12472–6

    Article  PubMed  Google Scholar 

  61. Wei X, Charles IG, Smith A, Ure J, Feng G, Huang F, Xu D, Muller W, Moncada S, Liew FY. Altered immune response in mice lacking inducible nitric oxide synthase. Nature 1995;375:408–11

    Article  PubMed  CAS  Google Scholar 

  62. Mak IT, Dickens BF, Komarov AM, Phillips TM, Weglicki WB. Activation of the neutrophil and loss of plasma glutathione during Mg-deficiency—modulation effect by NOS inhibition. Mol Cell Biochem 1997;176:35–39

    Article  PubMed  CAS  Google Scholar 

  63. Mak IT, Kramer JH, Weglicki WB. Suppression of neutrophil and endothelial activation by substance P receptor blockade in the Mg-deficient rat. Magnesium Research 2003;16:91–7

    PubMed  CAS  Google Scholar 

  64. Bussiere FL, Zimowska W, Geux E, Rayssiguier Y, Mazur A. Stress protein expression cDNA array study supports activation of neutrophils during acute Mg-deficiency in rats. Mag Res 2002;15:37–42

    CAS  Google Scholar 

  65. Lynn WS, Wong PKY. Neuroimmunodegenration: do neurons and T cells use common pathways for cell death? FASEB J 1995;9:1147–56

    PubMed  CAS  Google Scholar 

  66. Brewster DR, Goetzl EJ. Specific stimulation of human T lymphocytes by substance P. J Immunol 1983;131:1613–15

    PubMed  Google Scholar 

  67. Weglicki WB, Dickens BF, Wagner TL, Chmielinska JJ, Phillips TM. Immunoregulation by neuropeptides in magnesium deficiency: Ex vivo effect of enhanced substance P production on circulating T lymphocytes from Mg-deficient mice. Magnesium Res 1996;9:3–11

    CAS  Google Scholar 

  68. Kurantsin-Mills J, Cassidy MM, Stafford RE, Weglicki WB. Marked alterations in circulating inflammatory cells during cardiomyopathy development in a magnesium-deficient rat model. Br J Nutr 1997;78:845–55

    Article  PubMed  CAS  Google Scholar 

  69. Rude RK, Gruber HE, Wei LY, Frausto A, Mill BG. Magnesium deficiency: effect on bone and mineral metabolism in the mouse. Calcif Tissue Int 2003;72:32–41

    Article  PubMed  CAS  Google Scholar 

  70. Tejero-Taldo MI, Chmielinska JJ, Gonzalez G, Mak IT, Weglicki WB. NMDA receptor blockade inhibits cardiac inflammation in the Mg-deficient rat. J Pharmacol Exp Ther 2004;311:1–6

    Article  CAS  Google Scholar 

  71. McIntosh TK. Novel pharmacologic therapies in the treatment of experimental traumatic brain injury: a reveiw. J Neurotrauma 1993;10:215–61

    PubMed  CAS  Google Scholar 

  72. Kass IS, Cottrell JE, Chambers G. Magnesium and cobalt, not nimodipine, protect neurons against anoxic damage in the rat hippocampal slice. Anesthesiology 1988;69:710–15

    PubMed  CAS  Google Scholar 

  73. Vacanti FX, Ames A. Mild hypothermia and Mg++ protect against irreversible damage during CNS ischemia. Stroke 1984;15:695–8

    PubMed  CAS  Google Scholar 

  74. Pierson M, Swann J. Sensitization to noise-mediated induction of seizure susceptibility by MK-801 and phencyclidine. Brain Res 1991;560:229–36

    Article  PubMed  CAS  Google Scholar 

  75. Nakamura M. Magnesium: Current Status and New Developments. Theoretical, Biological and Medical Aspects. Dordrecht: Kluwer Academic Publishers, 1997:215–21

    Google Scholar 

  76. Miserendino MJ, Davis M. NMDA and non-NMDA antagonists infused into the nucleus reticularis pontis caudalis depress the acoustic startle reflex. Brain Res 1993;623:215–22

    Article  PubMed  CAS  Google Scholar 

  77. Dubray C, Rayssiguier Y. Magnesium: Current Status and New Developments. Theoretical, Biological and Medical Aspects. Dordrecht: Kluwer Academic Publishers, 1997:303–11

    Google Scholar 

  78. Dubray C, Alloui A, Bardin L, Rock E, Mazur A, Rayssiguier Y, Eschalier A, Lavarenne J. Magnesium deficiency induces an hyperalgesia reversed by the NMDA receptor antagonist MK-801. Neuroreport 1997;8:1383–6

    PubMed  CAS  Google Scholar 

  79. Gonzalez GM, Chmielinska J, Tejero-Taldo MI, Weglicki WB. NMDA receptor blockade of magnesium deficiency induced Substance P depletion in dorsal root ganglia. NHLBI–AHA 75th Scientific Sessions, 2002

  80. Gonzalez MP, Herrero MT, Vicente S, Oset-Gasque MJ. Effect of glutamate receptor agonists on catecholamine secretion in bovine chromaffin cells. Neuroendocrinology 1998;67:181–9

    Article  PubMed  CAS  Google Scholar 

  81. Jezova D, Tokarev D, Rusnak M. Endogenous excitatory amino acids are involved in stress-induced adrenocorticotropin and catecholamine release. Neuroendocrinology 1995;62:326–32

    PubMed  CAS  Google Scholar 

  82. Seelig MS. Consequences of magnesium deficiency on the enhancement of stress reactions; preventive and therapeutic implications (a review). J AM Coll Nutr 1994;13:429–46

    PubMed  CAS  Google Scholar 

  83. Tomiyasu T, Chishaki A, Nakamura M. Magnesium deficiency in adult rats promotes the induction of ventricular tachycardia by the administration of epinephrine. Heart Vessels 1998;13:122–31

    Article  PubMed  CAS  Google Scholar 

  84. Bean BL, Varghese PJ. Role of dietary magnesium deficiency in the pressor and arrythmogenic response to epinephrine in the intact dog. Am Jeart J 1994;127:96–102

    Article  CAS  Google Scholar 

  85. Guideri, Lehr D, Horowitz S. Enhanced incidence of isoproterenol-induced ventricular fibrillation in the magnesium-deficient rat. J Am Coll Nutr 1985;4:139–55

    PubMed  CAS  Google Scholar 

  86. Freedman AM, Cassidy MM, Weglicki WB. Magnesium-deficient myocardium demonstrates an increased susceptibility to an in vivo oxidative stress. Magnes Res 1991;4:185–9

    PubMed  CAS  Google Scholar 

  87. Freedman AM, Cassidy MM, Weglicki WB. Captopril protects against myocardial injury by magnesium deficiency. Hypertension 1991;18:142–7

    PubMed  CAS  Google Scholar 

  88. Jurjus AR, Walsh R, Weglicki WB, Correa-de-Araujo R. Increase in the expression of substance P receptors in the atria of magnesium-deficient rats. Cardiovascular Pathobiology 1998;2:199–206

    Google Scholar 

  89. Kuranstin-Mills J, Cassidy MM, Stafford RE, Weglicki WB. Marked alterations in circulating inflammatory cells during cardiomyopathy development in a magnesium deficient rat model. Br J Nutr 1997;78:845–55

    Article  Google Scholar 

  90. Atrakchi AH, Bloom S, Dickens BF, Mak IT, Weglicki WB. Hypomagnesemia and isoproterenol cardiomyopathies: Protection by probucol. J Cardiovas Pathol 1992;1:155–60

    Article  CAS  Google Scholar 

  91. Mak IT, Nedelec LF, Weglicki WB. Pro-oxidant properties and cytotoxicity of AZT-monophosphate and AZT. Cardiovasc Toxicol 2004;4:109-15

    Article  PubMed  CAS  Google Scholar 

  92. Komarov AM, Hall JM, Weglicki WB. Azidothymidine promotes free radical generation by activated macrophages and hydrogen peroxide-iron-mediated oxidation in a cell-free system. Biochem Biophys Acta 2004;1688:257–64

    PubMed  CAS  Google Scholar 

  93. Kramer JH, Mak IT, Weglicki WB. Chronic AZT treatment further enhances oxidative stress in vivo and postischemic injury to hearts from Mg-deficient rats. FASEB J 2003;17:A1131

    Google Scholar 

  94. Herzog WR, Atar D, Mak IT, Alyono D, MacCord C, Weglicki WB. Magnesium deficiency prolongs myocardial stunning in an open-chest swine model. Int J Cardiol 1994;47:105–15

    Article  PubMed  CAS  Google Scholar 

  95. Kubota T, Miyagishima M, Alvarez RJ, Kormos R, Rosenblum WD, Demetris AJ, Semigran MJ, Dec GW, Holubkov R, McTiernan CF, Mann DL, Feldman AM, McNamara DM. Expression of proinflammatory cytokines in the failing human heart: comparison of recent-onset and end-stage congestive heart failure. J Heart Lung Transplant 2000;19:819–24

    Article  PubMed  CAS  Google Scholar 

  96. Peschel T, Schonauer M, Thiele H, Anker SD, Schuler G, Niebauer J. Invasive assessment of bacterial endotoxin and inflammatory cytokines in patients with acute heart failure. Eur J Heart Fail 2003;5:609–14

    Article  PubMed  CAS  Google Scholar 

  97. Bolger AP, Anker SD. Tumour necrosis factor in chronic heart failure: a peripheral view on pathogenesis, clinical manifestations and therapeutic implications. Drugs 2000;60:1245–57

    Article  PubMed  CAS  Google Scholar 

  98. Li YY, Feng YQ, Kadokami T, McTiernan CF, Draviam R, Watkins SC, Feldman AM. Myocardial extracellular matrix remodeling intransgenic mice overexpressing tumor necrosis factor alpha can be modulated by anti-tumor necrosis factor alpha therapy. Proc Natl Acad Sci USA 2000;97:12746–51

    Article  PubMed  CAS  Google Scholar 

  99. Comstock KL, Krown KA, Page MT, Martin D, Ho P, Pedraza M, Castro EN, Nakajima N, Glembotski CC, Quintana PJ, Sabbadini RA. LPS-induced TNF-alpha release from and apoptosis in rat cardiomyocytes: obligatory role for CD14 in mediating the LPS response. J Mol Cell Cardiol 1998;30:2761–75

    Article  PubMed  CAS  Google Scholar 

  100. Liebscher DH, Liebscher DE. About the misdiagnosis of magnesium deficiency. J Am Coll Nutr 2004;23:730S–31S

    PubMed  CAS  Google Scholar 

  101. Silver BB. Development of cellular magnesium nano-analysis in treatment of clinical magnesium deficiency. J Am Coll Nutr 2004;23:732S–7S

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Isabel Tejero-Taldo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tejero-Taldo, M.I., Kramer, J.H., Mak, I.T. et al. The nerve-heart connection in the pro-oxidant response to Mg-deficiency. Heart Fail Rev 11, 35–44 (2006). https://doi.org/10.1007/s10741-006-9191-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-006-9191-7

Keywords

Navigation