Skip to main content
Log in

Alternating high and low intensity of blue light affects PSII photochemistry and raises the contents of carotenoids and anthocyanins in pepper leaves

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate the morphological and physiological response of pepper plants (Capsicum annuum L.) as affected by different light regimes. In this context, we hypothesized that the illumination with proportionally high blue light under low light conditions induces stress-related responses and leads to stronger accumulation of protective pigments. For this purpose, pepper plants of the cultivar Yolo Wonder B were cultivated in a climate chamber under compact fluorescence lamps (CFL) or light emitting diodes (LED). Light provided by LEDs was composed by either 15 or 75 % of blue, and completed by red light. In general, high blue light led to a stronger increase in heat dissipation, whereas the maximal photochemical efficiency remained almost unaffected. Biomass formation was lower under the LED light as compared to plants grown under CFL. However, different amounts of blue light did not impact plant morphological parameters such as stem length, leaf area and plant FM. Concentration of Chl a + b was significantly higher in plants grown under CFL, whereas the Chl a/Chl b ratio and leaf mass per area were increased under the LED treatments. In general, plants grown under blue and red LEDs accumulated significantly more flavonoids compared to plants grown under CFL. Additionally, the illumination with high blue light increased the synthesis and accumulation of anthocyanins and carotenoids, whereas flavonoid contents were not affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A:

Absorbance

AOI:

Area of interest

Chl:

Chlorophyll

ChlF:

Chlorophyll fluorescence

CFL:

Compact fluorescence lamps

das:

Days after sowing

DM:

Dry mass

ETR:

Electron transport rate

FLAV:

Epidermal flavonols

FM:

Fresh mass

Fm:

Maximum chlorophyll fluorescence of dark adapted leaf

Fm´:

Maximum chlorophyll fluorescence in the light adapted state

Fo:

Ground chlorophyll fluorescence of dark adapted leaf

Fv:

Variable chlorophyll fluorescence of dark adapted leaf

Fv/Fm:

Maximum photochemical efficiency of photosystem II

LEDs:

Light emitting diodes

LMA:

Leaf mass per area

NPQ:

Non photochemical quenching

n.s.:

Non significant

PAR:

Photosynthetic active radiation

References

  • Abidi F, Girault T, Douillet O, Guillemain G, Sintes G, Laffaire M, Ben Ahmed H, Smiti S, Huché-Thélier L, Leduc N (2013) Blue light effects on rose photosynthesis and photomorphogenesis. Plant Biol 15:67–74

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Azzarello E, Pollastri S, Tattin M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Cashmore AR (1997) The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana. Plant J 11(3):421–427

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Grancher N, Heil M, Black RC, Giovani B, Galland P, Lardemer D (2002) Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in Arabidopsis. Plant Physiol 129:774–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batschauer A (1998) Photoreceptors of higher plants. Planta 206:479–492

    Article  CAS  PubMed  Google Scholar 

  • Ben Ghozlen N, Cerovic ZG, Germain C, Toutain S, Latouche G (2010) Non-destructive optical monitoring of grape maturation by proximal sensing. Sensors 10:10040–10068

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown CS, Schuerger AC, Sager JC (1995) Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J Am Soc Hortic Sci 120(5):808–813

    CAS  PubMed  Google Scholar 

  • Bukhov N, Makarova V, Bondar V, Drozdova I, Egorova E, Kotova L, Kotov A, Krendeleva T (1999) Photosynthetic apparatus in primary leaves of barley seedlings grown under blue or red light of very low flux densities. Photosynth Res 60:179–189

    Article  CAS  Google Scholar 

  • Buschmann C, Meier D, Kleudgen HK, Lichtenthaler HK (1978) Regulation of chloroplast development by red and blue light. Photochem Photobiol 27:195–198

    Article  CAS  Google Scholar 

  • Carvalho RF, Takaki M, Azevedo RA (2011) Plant pigments: the many faces of light perception. Acta Physiol Plant 33:241–248

    Article  CAS  Google Scholar 

  • Cerovic ZG, Masdoumier G, Ghozlen NB, Latouche G (2012) A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol Plantarum 146:251–260

    Article  CAS  Google Scholar 

  • Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M (2011) The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62:335–364

    Article  CAS  PubMed  Google Scholar 

  • Child R, Morgan DC, Smith H (1981) Control of development in Chenopodium album L. by shade light: the effect of light quality (red far-red ratio) on morphogenesis. New Phytol 89:545–555

    Article  Google Scholar 

  • Cosgrove DJ, Green PB (1981) Rapid suppression of growth by blue light. Plant Physiol 68:1447–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong C, Fu Y, Liu G, Liu H (2014) Growth, photosynthetic characteristics, antioxidant capacity and biomass yield and quality of wheat (Triticum aestivum L.) exposed to LED light sources with different spectra combinations. J Agro Crop Sci 200(3):219–230

    Article  CAS  Google Scholar 

  • Feinbaum RL, Storz G, Ausubel FM (1991) High intensity and blue light regulated expression of chimeric chalcone synthase genes in transgenic Arabidopsis thaliana plants. Mol Gen Genet 226:449–456

    Article  CAS  PubMed  Google Scholar 

  • Galvao VC, Fankhauser C (2015) Sensing the light environment in plants: photoreceptors and early signaling steps. Curr Opin Neurobiol 34:46–53

    Article  CAS  PubMed  Google Scholar 

  • Giliberto L, Perrotta G, Pallara P, Weller JL, Fraser PD, Bramley PM, Fiore A, Tavazza M, Giuliano G (2005) Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol 137:199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goins GD, Yorio NC, Sanwo MM, Brown CS (1997) Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J Exp Bot 48:1407–1413

    Article  CAS  PubMed  Google Scholar 

  • Goulas Y, Cerovic ZG, Cartelat A, Moya I (2004) Dualex: a new instrument for field measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence. Appl Optics 43:4488–4496

    Article  CAS  Google Scholar 

  • Havaux M (1992) Stress tolerance of photosystem II in vivo. Antagonistic effects of water, heat and photoinhibition stresses. Plant Physiol 100:424–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havaux M (2013) Carotenoid oxidation products as stress signals in plants. Plant J 79:597–606

    Article  PubMed  Google Scholar 

  • Hernández I, Alegre L, van Breusegem F, Munné-Bosch S (2009) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14(3):125–132

    Article  PubMed  Google Scholar 

  • Hoenecke ME, Bula RJ, Tibbits TW (1992) Importance of blue photon levels for lettuce seedlings grown under red-light-emitting diodes. HortScience 27:427–430

    CAS  PubMed  Google Scholar 

  • Hoffmann AM, Noga G, Hunsche M (2015a) High blue light improves acclimation and photosynthetic recovery of pepper plants exposed to UV stress. Environ Exp Bot 109:254–263

    Article  CAS  Google Scholar 

  • Hoffmann AM, Noga G, Hunsche M (2015b) Acclimations to light quality on plant and leaf level affect the vulnerability of pepper (Capsicum annuum L.) to water deficit. J Plant Res. doi:10.1007/s10265-014-0698-z

    PubMed  Google Scholar 

  • Hogewoning SW, Douwstra P, Trouwborst G, van Ieperen W, Harbinson J (2010) An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. J Exp Bot 61(5):1267–1276

    Article  CAS  PubMed  Google Scholar 

  • Leufen G, Noga G, Hunsche M (2014) Fluorescence indices for the proximal sensing of powdery mildew, nitrogen supply and water deficit in sugar beet leaves. Agriculture 4:58–78

    Article  Google Scholar 

  • Li Q, Kubota C (2009) Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ Exp Bot 67:59–64

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Buschmann C (1978) Control of chloroplast development by red light, blue light and phytohormones. In: Akoyunoglou G et al (eds) chloroplast development. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 801–816

    Google Scholar 

  • Lichtenthaler HK, Miehé JA (1997) Fluorescence imaging as a diagnostic tool for plant stress. Trends Plant Sci 2(8):316–320

    Article  Google Scholar 

  • Loreto F, Tsonev T, Centritto M (2009) The impact of blue light on leaf mesophyll conductance. J Exp Bot 60:2283–2290

    Article  CAS  PubMed  Google Scholar 

  • Massa GD, Kim HH, Wheeler RM, Mitchell CA (2008) Plant productivity in response to LED lighting. HortScience 43:1951–1956

    Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659–668

    Article  CAS  PubMed  Google Scholar 

  • Meng XC, Xing T, Wang XJ (2004) The role of light in the regulation of anthocyanin accumulation in Gerbera hybrida. J Plant Growth Regul 44:243–250

    Article  CAS  Google Scholar 

  • Ramalho JC, Marques NC, Semedo JN, Matos MC, Quartin VL (2002) Photosynthetic performance and pigment composition of leaves from two tropical species is determined by light quality. Plant Biol 4:112–120

    Article  CAS  Google Scholar 

  • Sarala M, Taulavuori E, Karhu J, Laine K, Taulavuori K (2011) Growth and pigmentation of various species under blue light depletion. Boreal Environ Res 16:381–394

    Google Scholar 

  • Sarijeva G, Knapp M, Lichtenthaler HK (2007) Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginko and Fagus. J Plant Physiol 164(7):950–955

    Article  CAS  PubMed  Google Scholar 

  • Schuerger AC, Brown CS, Stryjewski EC (1997) Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light. Ann Bot 79:273–282

    Article  CAS  PubMed  Google Scholar 

  • Shimazaki K, Doi M, Assmann SM, Kinoshita T (2007) Light regulation of stomatal movement. Annu Rev Plant Biol 58:219–247

    Article  CAS  PubMed  Google Scholar 

  • Solovchenko AE, Schmitz-Eiberger M (2003) Significance of skin flavonoids for UV-B-protection in apple fruits. J Exp Bot 54:1977–1984

    Article  CAS  PubMed  Google Scholar 

  • Solovchenko AE, Chivkunova OB, Merzlyak MN, Reshetnikova IV (2001) A spectrophotometric analysis of pigments in apples. Russ J Plant Physl 48:693–700

    Article  CAS  Google Scholar 

  • Tlalka M, Runquist M, Fricker M (1999) Light perception and the role of the xanthophylls cycle in blue-light-dependent chloroplast movements in Lemna trisulca L. Plant J 20:447–459

    Article  CAS  PubMed  Google Scholar 

  • Wada M, Kagawa T, Sato Y (2003) Chloroplast movement. Annu Rev Plant Biol 54:455–468

    Article  CAS  PubMed  Google Scholar 

  • Wade HK, Bibikova TN, William JV, Jenkins GI (2001) Interactions within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue. Plant J 25:675–685

    Article  CAS  PubMed  Google Scholar 

  • Whitelam G, Halliday K (2007) Light and plant development. Blackwell Publishing, Oxford

  • Yanovsky MJ, Alconada-Magliano TM, Mazzella MA, Gatz C, Thomas B, Casal JJ (1998) Phytochrome A affects stem growth, anthocyanin synthesis, sucrose-phosphate-synthase activity and neighbour detection in sunlight-grown potato. Planta 205:235–241

    Article  CAS  Google Scholar 

  • Yorio NC, Goins GD, Kagie HR, Wheeler RM, Sager JC (2001) Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortScience 36:380–383

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Toshihiko Oishi, Ushio Europe B.V. (The Netherlands), and the group of technical engineers from Ushio Lighting Inc. (Japan) for developing and making the LED panels available for this study. Many thanks to Libeth Schwager for her support in pigment analysis, and to Brigitta Teschner and Judith Spielmanns for their assistance during the experimental phase. Finally, we acknowledge the Theodor-Brinkmann-Graduate School (Faculty of Agriculture, University of Bonn) for providing a scholarship to the first author.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna M. Hoffmann or Mauricio Hunsche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffmann, A.M., Noga, G. & Hunsche, M. Alternating high and low intensity of blue light affects PSII photochemistry and raises the contents of carotenoids and anthocyanins in pepper leaves. Plant Growth Regul 79, 275–285 (2016). https://doi.org/10.1007/s10725-015-0132-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0132-0

Keywords

Navigation