Skip to main content
Log in

Molecular characterization of two novel alleles of Hordoindoline genes in Hordeum chilense Roem. et Schult.

  • Short Communication
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Grain texture is an important trait in wheat quality, and is related to the presence or absence of puroindolines a and b. In barley, these proteins are synthesised by the Hordoindoline (Hin) genes, orthologs of the Puroindoline (Pin) genes present in bread wheat and Aegilops species. In this study, the variation of Hin genes has been characterized in two representative lines of Hordeum chilense Roem. et Schult., a wild barley species that has been used in the development of a new man-made cereal (tritordeum, ×Tritordeum Ascherson et Graebner). Two novel alleles were detected in this material, one for the Hina-H ch 1 gene and another for the Hinb-H ch 1 gene. These alleles demonstrated high similarity to the Pin genes of bread wheat, which may explain the soft grain texture of tritordeum. This suggests that the variation present in H. chilense could be utilized in wheat breeding through the use of tritordeum as a bridge species, to extend the range of different textures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Alvarez JB, Ballesteros J, Sillero JA, Martín LM (1992) Tritordeum: a new crop of potential importance in the food industry. Hereditas 116:193–197

    Google Scholar 

  • Alvarez JB, Martín LM, Martín A (1999) Genetic variation for the carotenoid pigments content in the amphiploid Hordeum chilense × Triticum turgidum conv. durum. Plant Breed 118:187–189

    Article  CAS  Google Scholar 

  • Alvarez JB, Martín A, Martín LM (2001) Variation in the high-molecular-weight glutenin subunits coded at the Glu-H ch 1 locus in Hordeum chilense. Theor Appl Genet 102:134–137

    Article  CAS  Google Scholar 

  • Alvarez JB, Broccoli A, Martín LM (2006) Variability and genetic diversity for gliadins in natural populations of Hordeum chilense. Genet Resour Crop Evol 53:1419–1425

    Article  Google Scholar 

  • Atienza SG, Giménez MJ, Martín A, Martín LM (2000) Variability in monomeric prolamins in Hordeum chilense. Theor Appl Genet 101:970–976

    Article  CAS  Google Scholar 

  • Atienza SG, Alvarez JB, Villegas AM, Giménez MJ, Ramírez MC, Martín A, Martín LM (2002) Variation for the low-molecular-weight glutenin subunits in a collection of Hordeum chilense. Euphytica 128:269–277

    Article  CAS  Google Scholar 

  • Beecher B, Smidansky ED, See D, Blake TK, Giroux MJ (2001) Mapping and sequence analysis of barley hordoindolines. Theor Appl Genet 102:833–840

    Article  CAS  Google Scholar 

  • Blochet J-E, Chevalier C, Forest E, Pebay-Peyroula E, Gautier M-F, Joudrier P, Pézolet M, Marion D (1993) Complete amino acid sequence of puroindoline, a new basic and cysteine-rich protein with a unique tryptophan-rich domain, isolated from wheat endosperm by Triton X-114 phase partitioning. FEBS Lett 329:336–340

    Article  CAS  PubMed  Google Scholar 

  • Darlington HF, Rouster J, Hoffmann L, Halford NG, Shewry PR, Simpson DJ (2001) Identification and molecular characterisation of hordoindolines from barley grain. Plant Mol Biol 47:785–794

    Article  CAS  PubMed  Google Scholar 

  • Feiz L, Beecher BS, Martin JM, Giroux MJ (2009) In planta mutagenesis determines the functional regions of the wheat puroindoline proteins. Genetics 183:853–860

    Article  CAS  PubMed  Google Scholar 

  • Gautier M-F, Aleman M-E, Guirao A, Marion D, Joudrier P (1994) Triticum aestivum puroindolines, two basic cysteine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol Biol 25:43–57

    Article  CAS  PubMed  Google Scholar 

  • Gautier MF, Cosson P, Guirao A, Alary R, Joudrier P (2000) Puroindoline genes are highly conserved in diploid ancestor wheats and related species but absent in tetraploid Triticum species. Plant Sci 153:81–91

    Article  CAS  Google Scholar 

  • Giménez MJ (1995) Variabilidad genética en Hordeum chilense [Genetic variability in Hordeum chilense]. Ph.D. thesis, Universidad de Córdoba, Spain

  • Giménez MJ, Cosio F, Martínez C, Silva F, Zuleta A, Martín LM (1997) Collecting Hordeum chilense Roem. et Schult. germplasm in desert and steppe dominions of Chile. Plant Genet Resour Newsl 109:17–19

    Google Scholar 

  • Martín A, Martín LM, Cabrera A, Ramírez MC, Giménez MJ, Rubiales D, Hernández P, Ballesteros J (1998) The potential of Hordeum chilense in breeding Triticeae species. In: Jaradat AA (ed) Triticeae III. Science, Enfield, pp 377–386

    Google Scholar 

  • Martín A, Alvarez JB, Martín LM, Barro F, Ballesteros J (1999) The development of tritordeum: a novel cereal for food processing. J Cereal Sci 30:85–95

    Article  Google Scholar 

  • Martinek P, Svobodová I, Věchet L (2013) Selection of the wheat genotypes and related species with resistance to Mycosphaerella graminicola. Agriculture 59:65–73

    Article  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (2012) Catalogue of gene symbols for wheat. http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp. Date of last successful access 24 Sept 2013

  • Morris CF (2002) Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol Biol 48:633–647

    Article  CAS  PubMed  Google Scholar 

  • Pomeranz Y, Williams PC (1990) Wheat hardness: its genetic, structural, and biochemical background, measurement, and significance. In: Pomeranz Y (ed) Advances in cereal science and technology. X. Am. Assoc, Cereal Chemistry, pp 471–544

    Google Scholar 

  • Rodríguez-Suárez C, Mellado-Ortega E, Hornero-Méndez D, Atienza SG (2013) Increase in transcript accumulation of Psy1 and e-Lcy genes in grain development is associated with differences in seed carotenoid content between durum wheat and tritordeum. Plant Mol Biol doi:10.1007/s11103-013-0160-y

  • Stacey J, Isaac PG (1994) Isolation of DNA from plants. In: Isaac PG (ed) Methods in Molecular Biology, Protocols for Nucleic Acid Analysis by Nonradioactive Probes, vol 28. Humana Press, Towota, NJ, pp 9–15

    Chapter  Google Scholar 

  • Terasawa I, Rahman SM, Takata K, Ikeda TM (2012) Distribution of Hordoindoline genes in the genus Hordeum. Theor Appl Genet 124:143–151

    Article  CAS  PubMed  Google Scholar 

  • Tobes N, Ballesteros J, Martínez C, Lovazzano G, Contreras D, Cosio F, Gastó J, Martín LM (1995) Collection mission of H. chilense Roem. et Schult. in Chile and Argentina. Genet Resour Crop Evol 42:211–216

    Article  Google Scholar 

  • Villegas D, Casadesús J, Atienza SG, Martos V, Maalouf F, Karam F, Aranjuelo I, Nogués S (2010) Tritordeum, wheat and triticale yield components under multi-local mediterranean drought conditions. Field Crop Res 116:68–74

    Article  Google Scholar 

  • von Bothmer R, Jacobsen N, Baden C, Jørgensen RB, Linde-Laursen I (1995) An ecogeografical study of the genus Hordeum, 2nd edn. Systematic and ecogeografical studies on crop genepools 7. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Yanaka M, Takata K, Terasawa Y, Ikeda TM (2011) Chromosome 5H of Hordeum species involved in reduction in grain hardness in wheat genetic background. Theor Appl Genet 123:1013–1018

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grant AGL2010-19643-C02-01 from the Spanish Ministry of Economy and Competitiveness, co-financed with European Regional Development Fund (FEDER) from the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan B. Alvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guzmán, C., Alvarez, J.B. Molecular characterization of two novel alleles of Hordoindoline genes in Hordeum chilense Roem. et Schult.. Genet Resour Crop Evol 61, 307–312 (2014). https://doi.org/10.1007/s10722-013-0077-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-013-0077-y

Keywords

Navigation