Skip to main content
Log in

Boundaries of non-compact harmonic manifolds

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

In this paper we consider non-compact non-flat simply connected harmonic manifolds. In particular, we show that the Martin boundary and Busemann boundary coincide for such manifolds. For any finite volume quotient we show that (up to scaling) there is a unique Patterson–Sullivan measure and this measure coincides with the harmonic measure. As an application of these results we prove that the geodesic flow on a non-flat finite volume harmonic manifold without conjugate points is topologically transitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ancona, A.: Théorie du potentiel sur les graphes et les variétés. In: École d’été de Probabilités de Saint-Flour XVIII–1988, Volume 1427 of Lecture Notes in Math., pp. 1–112. Springer, Berlin (1990)

  2. Anderson, M.T., Schoen, R.: Positive harmonic functions on complete manifolds of negative curvature. Ann. Math. (2), 121(3):429–461 (1985)

    Google Scholar 

  3. Ballmann, W.: Lectures on Spaces of Nonpositive Curvature, Volume 25 of DMV Seminar. Birkhäuser Verlag, Basel (1995) (With an appendix by Misha Brin)

  4. Benoist, Y., Foulon, P., Labourie, F.: Flots d’Anosov à distributions stable et instable différentiables. J. Am. Math. Soc. 5(1), 33–74 (1992)

    MATH  MathSciNet  Google Scholar 

  5. Besse, A.L.: Manifolds all of Whose Geodesics are Closed, Volume 93 of Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas]. Springer, Berlin (1978) (With appendices by Epstein, D.B.A., Bourguignon, J.-P., Bérard-Bergery, L., Berger, M., Kazdan, J.L.)

  6. Besson, G., Courtois, G., Gallot, S.: Entropies et rigidités des espaces localement symétriques de courbure strictement négative. Geom. Funct. Anal. 5(5), 731–799 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Besson, G., Courtois, G., Gallot, S.: Minimal entropy and Mostow’s rigidity theorems. Ergodic Theory Dyn. Syst. 16(4), 623–649 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Damek, E., Ricci, F.: A class of nonsymmetric harmonic Riemannian spaces. Bull. Am. Math. Soc. (N.S.), 27(1):139–142 (1992)

    Google Scholar 

  9. Eberlein, P.: Geodesic flows on negatively curved manifolds. II. Trans. Am. Math. Soc. 178, 57–82 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  10. Eberlein, P.: When is a geodesic flow of Anosov type? I. J. Differ. Geom. 8, 437–463 (1973)

    MATH  MathSciNet  Google Scholar 

  11. Eschenburg, J.-H.: Horospheres and the stable part of the geodesic flow. Math. Z. 153(3), 237–251 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eschenburg, J.-H., O’Sullivan, John J.: Growth of Jacobi fields and divergence of geodesics. Math. Z. 150(3), 221–237 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  13. Foulon, P., Labourie, F.: Sur les variétés compactes asymptotiquement harmoniques. Invent. Math. 109(1), 97–111 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Freire, A., Mañé, R.: On the entropy of the geodesic flow in manifolds without conjugate points. Invent. Math. 69(3), 375–392 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Green, L.W.: A theorem of E. Hopf. Michigan Math. J. 5, 31–34 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  16. Grigor’yan, A.: Heat Kernel and Analysis on Manifolds, Volume 47 of AMS/IP Studies in Advanced Mathematics. American Mathematical Society, Providence, RI (2009)

  17. Heber, J.: On harmonic and asymptotically harmonic homogeneous spaces. Geom. Funct. Anal. 16(4), 869–890 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Knieper, Gerhard: New results on noncompact harmonic manifolds. Comment. Math. Helv. 87(3), 669–703 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ledrappier, F.: Linear drift and entropy for regular covers. Geom. Funct. Anal. 20(3), 710–725 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ledrappier, F., Wang, X.: An integral formula for the volume entropy with applications to rigidity. J. Differ. Geom. 85(3), 461–477 (2010)

    Google Scholar 

  21. Lichnerowicz, A.: Sur les espaces riemanniens complètement harmoniques. Bull. Soc. Math. France, 72:146–168 (1944)

    Google Scholar 

  22. Manning, A.: Topological entropy for geodesic flows. Ann. of Math. (2), 110(3):567–573 (1979)

    Google Scholar 

  23. Nikolayevsky, Y.: Two theorems on harmonic manifolds. Comment. Math. Helv. 80(1), 29–50 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ranjan, A., Shah, H.: Harmonic manifolds with minimal horospheres. J. Geom. Anal. 12(4), 683–694 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ranjan, A., Shah, H.: Busemann functions in a harmonic manifold. Geom. Dedicata 101, 167–183 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Szabó, Z.I.: The Lichnerowicz conjecture on harmonic manifolds. J. Differ. Geom. 31(1), 1–28 (1990)

    MATH  Google Scholar 

  27. Walker, A.G.: On Lichnerowicz’s conjecture for harmonic 4-spaces. J. Lond. Math. Soc. 24, 21–28 (1949)

    Article  MATH  Google Scholar 

  28. Wang, X.: Compactifications of complete riemannian manifolds and their applications. In: Bray, H.L. , Minicozzi II, W.P. (eds.) Surveys in Geometric Analysis and Relativity, pp. 517–529. International Press of Boston (2011)

  29. Willmore, T.J.: Mean value theorems in harmonic Riemannian spaces. J. Lond. Math. Soc. 25, 54–57 (1950)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

I would like to thank Ralf Spatzier for many helpful conversations. I would also like to thank the referee for many helpful suggestions and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Zimmer.

Additional information

The author thanks the National Science Foundation for support through the grant DMS-0602191.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmer, A.M. Boundaries of non-compact harmonic manifolds. Geom Dedicata 168, 339–357 (2014). https://doi.org/10.1007/s10711-013-9833-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-013-9833-6

Keywords

Mathematics Subject Classification

Navigation