Skip to main content
Log in

There is no triangulation of the torus with vertex degrees 5, 6, ... , 6, 7 and related results: geometric proofs for combinatorial theorems

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

There is no 5,7-triangulation of the torus, that is, no triangulation with exactly two exceptional vertices, of degree 5 and 7. Similarly, there is no 3,5-quadrangulation. The vertices of a 2,4-hexangulation of the torus cannot be bicolored. Similar statements hold for 4,8-triangulations and 2,6-quadrangulations. We prove these results, of which the first two are known and the others seem to be new, as corollaries of a theorem on the holonomy group of a euclidean cone metric on the torus with just two cone points. We provide two proofs of this theorem: One argument is metric in nature, the other relies on the induced conformal structure and proceeds by invoking the residue theorem. Similar methods can be used to prove a theorem of Dress on infinite triangulations of the plane with exactly two irregular vertices. The non-existence results for torus decompositions provide infinite families of graphs which cannot be embedded in the torus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors L.V.: Complex Analysis. 3rd edn. McGraw-Hill Book Co., New York (1978)

    Google Scholar 

  2. Altshuler A.: Construction and enumeration of regular maps on the torus. Discret. Math. 4, 201–217 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnette D., Jucovič E., Trenkler M.: Toroidal maps with prescribed types of vertices and faces. Mathematika 18, 82–90 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brehm U., Kühnel W.: Equivelar maps on the torus. Eur. J. Combin. 29(8), 1843–1861 (2008). doi:10.1016/j.ejc.2008.01.010

    Article  MATH  Google Scholar 

  5. Datta B., Upadhyay A.K.: Degree-regular triangulations of torus and Klein bottle. Proc. Indian Acad. Sci. Math. Sci 115(3), 279–307 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bobenko, A.I., Kenyon, R.W., Sullivan, J.M., Ziegler, G.M. (eds.): Discrete differential geometry. Oberwolfach Rep. 3(1), 653–728 (2006)

  7. Dress, A.W.M.: On the classification of local disorder in globally regular spatial patterns. In: Temporal order, Springer Ser. Synergetics, vol. 29, pp. 61–66. Springer, Berlin (1985)

  8. Eberhard V.: Zur Morphologie der Polyeder. Teubner, Leipzig (1891)

    Google Scholar 

  9. Gagarin A., Myrvold W., Chambers J.: The obstructions for toroidal graphs with no K 3,3’s. Discret. Math. 309(11), 3625–3631 (2009). doi:10.1016/j.disc.2007.12.075

    Article  MathSciNet  MATH  Google Scholar 

  10. Grünbaum B.: Some analogues of Eberhard’s theorem on convex polytopes. Israel J. Math. 6, 398–411 (1968)

    Article  MathSciNet  Google Scholar 

  11. Grünbaum B.: Planar maps with prescribed types of vertices and faces. Mathematika 16, 28–36 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grünbaum, B.: Convex polytopes, Graduate Texts in Mathematics, vol. 221. Springer, New York. 2nd edn. prepared by Kaibel, Klee and Ziegler (2003)

  13. Grünbaum B., Szilassi L.: Geometric realizations of special toroidal complexes. Contrib. Discret. Math. 4(1), 21–39 (2009)

    MATH  Google Scholar 

  14. Jendrol’ S., Jucovič E.: On the toroidal analogue of Eberhard’s theorem. Proc. Lond. Math. Soc. (3) 25, 385–398 (1972)

    Article  Google Scholar 

  15. Jucovič E., Trenkler M.: A theorem on the structure of cell-decompositions of orientable 2-manifolds. Mathematika 20, 63–82 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Negami S.: Uniqueness and faithfulness of embedding of toroidal graphs. Discret. Math. 44(2), 161–180 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Thomassen C.: Tilings of the torus and the Klein bottle and vertex-transitive graphs on a fixed surface. Trans. Am. Math. Soc 323(2), 605–635 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Thurston, W.P.: Shapes of polyhedra and triangulations of the sphere. In: The Epstein Birthday Schrift, Geom. Topol. Monogr., vol. 1, pp. 511–549. Geom. Topol. Publ., Coventry (1998)

  19. Zaks J.: The analogue of Eberhard’s theorem for 4-valent graphs on the torus. Israel J. Math. 9, 299–305 (1971)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Sullivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izmestiev, I., Kusner, R.B., Rote, G. et al. There is no triangulation of the torus with vertex degrees 5, 6, ... , 6, 7 and related results: geometric proofs for combinatorial theorems. Geom Dedicata 166, 15–29 (2013). https://doi.org/10.1007/s10711-012-9782-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-012-9782-5

Keywords

Mathematics Subject Classification (2000)

Navigation