Skip to main content

Advertisement

Log in

Soil application of ash produced by low-temperature fluidized bed gasification: effects on soil nutrient dynamics and crop response

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Recycling of residual products of bioenergy conversion processes is important for adding value to the technologies and as a potential beneficial soil fertility amendment. In this study, two different ash materials originating from low temperature circulating fluidized bed (LT-CFB) gasification of either wheat straw (SA) or residue fibers mainly from citrus peels (CP) were tested regarding their potential to be used as fertilizer on agricultural soils. A soil incubation study, a greenhouse experiment with barley and faba bean, and an accompanying outdoor experiment with maize were carried out to investigate the effects of the ashes on soil microbiological and chemical properties and on the response of the three crops. The ash treatments were compared with a control treatment that received only nitrogen, magnesium, and sulphur (CO) and a fully fertilized control (COPK). Soil microbial parameters were not significantly altered after ash application. SA was generally able to increase the levels of Olsen-P and of the ammonium acetate/acetic acid-extractable K in soil as well as to improve the yield of barley and maize, whereas faba bean did not react positively to ash amendment. CP did not show beneficial effects on soil nutrient levels or on crop biomass. We conclude from the results of this study, that—depending on the feedstock used—ashes from LT-CFB gasification of plant biomass can be used to replace mineral fertilizers if they are applied according to their nutrient content, the crop demand, and soil properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bolland M, Siddique K, Loss S, Baker M (1999) Comparing responses of grain legumes, wheat and canola to applications of superphosphate. Nutr Cycl Agroecosyst 53:157–175

    Article  Google Scholar 

  • Bonilla I, Bolaños L (2009) Mineral nutrition for legume-rhizobia symbiosis: B, Ca, N, P, S, K, Fe, Mo, Co., and Ni: a review. In: Lichtfouse E (ed) Organic farming, pest control and remediation of soil pollutants. Springer, Dordrecht, pp 253–274

    Chapter  Google Scholar 

  • Cayuela ML, Oenema O, Kuikman PJ, Bakker RR, van Groenigen JW (2010) Bioenergy by-products as soil amendments? Implications for carbon sequestration and greenhouse gas emissions. Glob Change Biol Bioenergy 2:201–213

    CAS  Google Scholar 

  • Childers DL, Corman J, Edwards M, Elser JJ (2011) Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle. Bioscience 61:117–124

    Article  Google Scholar 

  • Codling E, Chaney R, Sherwell J (2002) Poultry litter ash as a potential phosphorus source for agricultural crops. J Environ Qual 31:954–961

    Article  PubMed  CAS  Google Scholar 

  • Dawson CJ, Hilton J (2011) Fertiliser availability in a resource-limited world: production and recycling of nitrogen and phosphorus. Food Policy 36:S14–S22

    Article  Google Scholar 

  • Demeyer A, Nkana J, Verloo M (2001) Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour Technol 77:287–295

    Article  PubMed  CAS  Google Scholar 

  • Eichler-Löbermann B, Schiemenz K, Makadi M, Vago I, Köppen D (2008) Nutrient cycling by using residues of bioenergy production, II: effects of biomass ashes on plant and soil parameters. Cereal Res Commun 36:1259–1262

    Google Scholar 

  • Elliot D (1988) Relation of reaction-time and temperature to chemical-composition of pyrolysis oils. ACS Symp Ser 376:55–65

    Article  CAS  Google Scholar 

  • Erich MS, Ohno T (1992) Phosphorus availability to corn from wood ash-amended soils. Water Air Soil Poll 64:475–485

    Article  CAS  Google Scholar 

  • Ernfors M, Sikstrom U, Nilsson M, Klemedtsson L (2010) Effects of wood ash fertilization on forest floor greenhouse gas emissions and tree growth in nutrient poor drained peatland forests. Sci Total Environ 408:4580–4590

    Article  PubMed  CAS  Google Scholar 

  • Etiegni L, Mahler R, Campbell A, Shafii B (1991) Evaluation of wood ash disposal on agricultural land.2. Potential toxic effects on plant-growth. Commun Soil Sci Plant Anal 22:257–267

    Article  CAS  Google Scholar 

  • Ferreiro A, Merino A, Diaz N, Pineiro J (2011) Improving the effectiveness of wood-ash fertilization in mixed mountain pastures. Grass Forage Sci 66:337–350

    Article  CAS  Google Scholar 

  • Flechard CR, Neftel A, Jocher M, Ammann C, Fuhrer J (2005) Bi-directional soil/atmosphere N2O exchange over two mown grassland systems with contrasting management practices. Glob Change Biol 11:2114–2127

    Article  Google Scholar 

  • Hansen OC (2000) Risks from cadmium accumulation in agricultural soils due to the use of fertilisers containing cadmium, Danish Environmental Protection Agency. http://ec.europa.eu/enterprise/sectors/chemicals/files/reports/denmark_en.pdf. Accessed 14 Mar 2012

  • Hauggaard-Nielsen H, Ambus P, Jensen E (2003) The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley. Nutr Cycl Agroecosyst 65:289–300

    Article  CAS  Google Scholar 

  • Hauggaard-Nielsen H, Mundus S, Jensen ES (2009) Nitrogen dynamics following grain legumes and subsequent catch crops and the effects on succeeding cereal crops. Nutr Cycl Agroecosyst 84:281–291

    Article  CAS  Google Scholar 

  • Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100:5478–5484

    Article  PubMed  CAS  Google Scholar 

  • Hood-Nowotny R, Hinko-Najera Umana N, Inselbacher E, Oswald-Lachouani P, Wanek W (2010) Alternative methods for measuring inorganic, organic, and total dissolved nitrogen in soil. Soil Sci Soc Am J 74:1018–1027

    Article  CAS  Google Scholar 

  • Jokinen HK, Kiikkila O, Fritze H (2006) Exploring the mechanisms behind elevated microbial activity after wood ash application. Soil Biol Biochem 38:2285–2291

    Article  CAS  Google Scholar 

  • Kuligowski K, Stoholm P, Pind N, Laursen J, Poulsen TG (2008) Nutrients and heavy metals distribution in thermally treated pig manure. Waste Manage Res 26:347–354

    Article  CAS  Google Scholar 

  • Kuligowski K, Poulsen TG, Rubaek GH, Sorensen P (2010) Plant-availability to barley of phosphorus in ash from thermally treated animal manure in comparison to other manure based materials and commercial fertilizer. Eur J Agron 33:293–303

    Article  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review RID A-2653-2011. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Lopez R, Padilla E, Bachmann S, Eichler-Loebermann B (2009) Effects of biomass ashes on plant nutrition in tropical and temperate regions. J Agric Rural Dev Trop Subtrop 110:49–58

    Google Scholar 

  • Ludwig B, Flessa B, Beese F (2000) Use of C-13 and N-15 mass spectrometry to study the decomposition of Calamagrostis epigeios in soil column experiments with and without ash additions. Isot Environ Health Stud 36:49–61

    Article  CAS  Google Scholar 

  • Maljanen M, Nykanen H, Moilanen M, Martikainen PJ (2006) Greenhouse gas fluxes of coniferous forest floors as affected by wood ash addition. For Ecol Manage 237:143–149

    Article  Google Scholar 

  • McIntosh J (1969) Bray and morgan soil extractants modified for testing acid soils from different parent materials. Agron J 61:259–265

    Article  CAS  Google Scholar 

  • Mozaffari M, Russelle MP, Rosen CJ, Nater EA (2002) Nutrient supply and neutralizing value of alfalfa stem gasification ash. Soil Sci Soc Am J 66:171–178

    Article  CAS  Google Scholar 

  • Murphy J, Riley J (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chim Acta 26:31–36

    Article  Google Scholar 

  • Neset TS, Cordell D (2012) Global phosphorus scarcity: identifying synergies for a sustainable future. J Sci Food Agric 92:2–6

    Article  PubMed  CAS  Google Scholar 

  • Neset TS, Drangert J, Bader H, Scheidegger R (2010) Recycling of phosphorus in urban Sweden: a historical overview to guide a strategy for the future. Water Policy 12:611–624

    Article  Google Scholar 

  • Nuruzzaman M, Lambers H, Bolland M, Veneklaas E (2005) Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western Australia RID A-1544-2008 RID C-8907-2009. Plant Soil 271:175–187

    Article  CAS  Google Scholar 

  • Obernberger I (1997) Aschen aus Biomassefeuerungen—Zusammensetzung und Verwertung. In: VDI Bericht 1319 “Thermische Biomassenutzung—Technik und Realisierung”, VDI Verlag GmbH, Düsseldorf, pp 199–222

  • Oertli JJ (2008) Fertilisers, inorganic. In: Chesworth W (ed) Encyclopedia of soil science. Springer, Dordrecht, pp 247–263

    Chapter  Google Scholar 

  • Ohno T (1992) Neutralization of soil acidity and release of phosphorus and potassium by wood ash. J Environ Qual 21:433–438

    Article  Google Scholar 

  • Olsen S, Watanabe F, Cosper H, Larson W, Nelson L (1954) Residual phosphorus availability in long-time rotations on calcareous soils. Soil Sci 78:141–151

    Article  CAS  Google Scholar 

  • Ostergard H, Finckh MR, Fontaine L, Goldringer I, Hoad SP, Kristensen K, van Bueren ETL, Mascher F, Munk L, Wolfe MS (2009) Time for a shift in crop production: embracing complexity through diversity at all levels. J Sci Food Agric 89:1439–1445

    Article  CAS  Google Scholar 

  • Pagliari PH, Rosen CJ, Strock JS (2009) Turkey manure ash effects on alfalfa yield, tissue elemental composition, and chemical soil properties. Commun Soil Sci Plant Anal 40:2874–2897

    Article  CAS  Google Scholar 

  • Pagliari P, Rosen C, Strock J, Russelle M (2010) Phosphorus availability and early corn growth response in soil amended with Turkey manure ash. Commun Soil Sci Plant Anal 41:1369–1382

    Article  CAS  Google Scholar 

  • Pels JR, Saraber AJ (2011) Solid biofuels for energy. In: Insam H, Knapp BA (eds) Recycling of biomass ashes. Springer, Berlin Heidelberg, pp 219–235

    Google Scholar 

  • Pels JR, De Nie DS, Kiel JHA (2005) Utilization of ashes from biomass combustion and gasification. 14th European biomass conference and exhibition, Paris. ftp://energie.nl/pub/www/library/report/2005/rx05182.pdf. Accessed 14 Mar 2012

  • Perkiomaki J, Fritze H (2005) Cadmium in upland forests after vitality fertilization with wood ash—a summary of soil microbiological studies into the potential risk of cadmium release. Biol Fertil Soils 41:75–84

    Article  Google Scholar 

  • Ragauskas A, Williams C, Davison B, Britovsek G, Cairney J, Eckert C, Frederick W, Hallett J, Leak D, Liotta C, Mielenz J, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto K, Oba Y (1994) Effect of fungal to bacterial biomass ratio on the relationship between co2 evolution and total soil microbial biomass. Biol Fertility Soils 17:39–44

    Article  Google Scholar 

  • Schiemenz K, Eichler-Loebermann B (2010) Biomass ashes and their phosphorus fertilizing effect on different crops. Nutr Cycl Agroecosyst 87:471–482

    Article  Google Scholar 

  • Sharpley A, McDowell R, Kleinman P (2001) Phosphorus loss from land to water: integrating agricultural and environmental management. Plant Soil 237:287–307

    Article  CAS  Google Scholar 

  • Siegel S, Castellan NJ Jr (1988) Nonparametric statistics for the behavioral sciences, 2nd edn. Mc Graw-Hill, London, p 399

    Google Scholar 

  • Obernberger I, Supancic, K (2009) Possibilities of ash utilization from biomass combustion plants. In: Proceedings of the 17th biomass conference and exhibition, Hamburg, 2373–2384

  • Statsoft Inc. (2010) STATISTICA (data analysis software system), version 9.1. www.statsoft.com

  • Stoholm P, Nielsen RG, Sarbæk L, Tobiasen L, Henriksen UB, Fock MW, Richardt K, Sander B, Wolff L (2002) The low temperature CFB gasifier—further test results and possible applications. In: Proceedings of the European biomass conference, Amsterdam

  • Stoholm P, Cramer J, Krogh J, Nielsen RG, Sander B, Ahrenfeldt J, Henriksen U (2010) The low temperature CFB gasifier—100 kWth tests on straw and new 6 MWth demonstration plant. In: Proceedings of the European biomass conference, Lyon

  • Taheripour F, Hertel TW, Tyner WE, Beckman JF, Birur DK (2010) Biofuels and their by-products: global economic and environmental implications. Biomass Bioenergy 34:278–289

    Article  CAS  Google Scholar 

  • Tang X, Ma Y, Hao X, Li X, Li J, Huang S, Yang X (2009) Determining critical values of soil Olsen-P for maize and winter wheat from long-term experiments in China. Plant Soil 323:143–151

    Article  CAS  Google Scholar 

  • van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy 35:3748–3762

    Google Scholar 

  • Van Vuuren DP, Bouwman AF, Beusen AHW (2010) Phosphorus demand for the 1970–2100 period: a scenario analysis of resource depletion. Glob Environ Chan 20:428–439

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass-C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass c by fumigation extraction—an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  • Zahran H (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Bio R 63:968–989

    CAS  Google Scholar 

  • Zwart R, van der Heijden S, Emmen R, Bentzen JD, Ahrenfeldt J, Stoholm P, Krogh J (2010) Final report of ERA-NET Bioenergy project “Tar removal from low-temperature gasifiers”. www.eranetbioenergy.net/website/exec/front?id=12641-6e65742e6572616e65742e53756250616765. Accessed 8 April 2012

Download references

Acknowledgments

The authors thank the technical staff at KT-ECO and especially Mette Flodgaard for valuable technical assistance. We are grateful to Christian Monies and Petra Lachouani for support regarding AAS measurements and to Mette Grønlund for advice on phosphorus analyses. DONG Energy is thanked for providing the ash analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorette Müller-Stöver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller-Stöver, D., Ahrenfeldt, J., Holm, J.K. et al. Soil application of ash produced by low-temperature fluidized bed gasification: effects on soil nutrient dynamics and crop response. Nutr Cycl Agroecosyst 94, 193–207 (2012). https://doi.org/10.1007/s10705-012-9533-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-012-9533-x

Keywords

Navigation