Skip to main content
Log in

Reproductive investment in moa: a K-selected life-history strategy?

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

The exaggerated K-selected life-history strategy of moa has been suggested as an important factor causing their rapid extinction. Classically, this strategy is characterized by few, large offspring and low fecundity rates. Assuming clutches with one or two eggs as derived from the fossil record, we tested if eggs of moa were larger than the average of similar-sized birds, and estimated their unknown annual breeding frequencies. Therefore, we established allometries on body mass and different reproductive traits (i.e. egg mass, clutch mass and annual clutch mass). These were derived for r-selected (r-model) and for K-selected (K-model) bird species. In agreement with our initial expectations, moa had egg to body mass relations seen in “average” extant K-selected birds. While the K-model pointed to a clutch size of one or two eggs for moa corroborating fossil data and a K-selected life-history, the r-model predicted two to three times larger sizes. Under clutch sizes between one and two eggs and an annual clutch mass as observed in other similar-sized flightless island birds (e.g. rails, ratites), the annual clutch mass allometry suggested one to three clutches per year for moa. Even when assuming less than one brood per year (K-model predicts 0.5 clutches per year); annual clutch masses were still consistent with the K-model. Further studies are needed to clarify whether or not the reproductive strategy of flightless island birds and/or of the birds underlying the K-model fits better to the moa strategy. The approach presented herein, illustrates that combining biological and paleontological data can assist in the reconstruction of species traits, which are insufficiently or not preserved in fossils, but are necessary to understand the evolution of traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson A (1989) Prodigious birds: moas and moa-hunting in prehistoric New Zealand. Cambridge University Press, Cambridge

    Google Scholar 

  • Asmundson VS (1939) The formation of the egg in the oviduct of the Turkey (Meleagris gallopavo). J Exp Zool 82:287–304

    Article  Google Scholar 

  • Banga-Mboko H, Maes D, Leroy PL (2007) Indigenous Muscovy ducks in Congo-Brazzaville. 1. A survey of indigenous Muscovy duck management in households in Dolisie City. Trop Anim Health Prod 39:115–122

    Article  PubMed  CAS  Google Scholar 

  • Barri FR, Martella MB, Navarro JL (2008) Characteristics, abundance and fertility of orphan eggs of the lesser rhea (Pterocnemia -rhea- pennata pennata): implications for conservation. J Ornithol 149:285–288

    Article  Google Scholar 

  • Barri FR, Martella MB, Navarro JL (2009) Reproductive success of wild lesser rheas (Pterocnemia -rhea- pennata pennata) in north-western Patagonia, Argentina. J Ornithol 150:127–132

    Article  Google Scholar 

  • Birchard GF, Deeming DC (2009) Avian eggshell thickness: scaling and maximum body mass in birds. J Zool 279:95–101

    Article  Google Scholar 

  • BirdLife International (2008) Macrocephalon maleo. IUCN 2010. IUCN Red List of Threatened Species. Version 2010.1. Available from www.iucnredlist.org. Accessed May 2010

  • Blueweiss L, Fox H, Kudzma V, Nakashima D, Peters R, Sams S (1978) Relationships between body size and some life history parameters. Oecologia 37:257–272

    Article  Google Scholar 

  • Body DR, Reid B (1987) The lipid, fatty acid and amino acid composition of ratite eggs from three different species of kiwis Apteryx australis mantelli, A. haasti and A. oweni bred in captivity on the same diet. Biochem Syst Ecol 15:625–628

    Article  CAS  Google Scholar 

  • Bramley GN (1996) A small predator removal experiment to protect North Island weka (Gallirallus australis greyi) and the case for single-subject approaches in determining agents of decline. N Z J Ecol 20:37–43

    Google Scholar 

  • Bunce M, Worthy TH, Ford T, Hoppitt W, Willerslev E, Drummond A, Cooper A (2003) Extreme reversed sexual size dimorphism in the extinct New Zealand moa Dinornis. Nature 425:172–175

    Article  PubMed  CAS  Google Scholar 

  • Bunce M, Worthy TH, Phillips MJ, Holdaway RN, Willerslev E, Haile J, Shapiro B, Scofield RP, Drummond A, Kamp PJJ, Cooper A (2009) The evolutionary history of the extinct ratite moa and New Zealand Neogene paleogeography. Proc Natl Acad Sci USA 106:20646–20651

    Article  PubMed  CAS  Google Scholar 

  • Burbidge ML, Colbourne RM, Robertson HA, Baker AJ (2003) Molecular and other biological evidence supports the recognition of at least three species of brown kiwi. Conserv Genet 4:167–177

    Article  CAS  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Cannon ME, Carpenter RE, Ackerman RA (1986) Synchronous hatching and oxygen consumption of Darwin’s rhea eggs (Pterocnemia pennata). Physiol Zool 59:95–108

    Google Scholar 

  • Charnov EL (2005) Reproductive effort is inversely proportional to average adult life span. Evol Ecol Res 7:1221–1222

    Google Scholar 

  • Charnov EL, Warne R, Moses M (2007) Lifetime reproductive effort. Am Nat 170:E129–E142

    Article  PubMed  Google Scholar 

  • Clarke JA, Tambussi CP, Noriega JI, Erickson GM, Ketcham RA (2005) Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature 433:305–308

    Article  PubMed  CAS  Google Scholar 

  • Colbourne R (2002) Incubation behaviour and egg physiology of kiwi (Apteryx spp.) in natural habitats. N Z J Ecol 26:129–138

    Google Scholar 

  • Cooper A, Lalueza-Fox C, Anderson S, Rambaut A, Austin J, Ward R (2001) Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409:704–707

    Article  PubMed  CAS  Google Scholar 

  • Crome FHJ (1976) Some observations on the biology of the cassowary in Northern Queensland. Emu 76:8–14

    Article  Google Scholar 

  • Croxall JP (1995) Sexual size dimorphism in seabirds. Oikos 73:399–403

    Article  Google Scholar 

  • Cubo J, Ponton F, Laurin M, De Margerie E, Castanet J (2005) Phylogenetic Signal in Bone Microstructure of Sauropsids. Syst Biol 54:562–574

    Article  PubMed  CAS  Google Scholar 

  • Cubo J, Legendre P, De Ricqlès A, Montes L, De Margerie E, Castanet J, Desdevises Y (2008) Phylogenetic, functional, and structural components of variation in bone growth rate of amniotes. Evol Dev 10:217–227

    Article  PubMed  Google Scholar 

  • Dani S (1993) A ema (Rhea americana): biologia, manejo e conservacao. Fundacao Acangau, Belo Horizonte

  • Davies SJJF (2002) Ratites and tinamous: tinamidae, rheidae, dromaiidae, casuariidae, apterygidae, struthionidae (bird families of the world). Oxford University Press, New York

    Google Scholar 

  • de Magalhães JP, Costa J, Toussaint O (2005) HAGR: the human ageing genomic resources. Nucleic Acids Res 33:D537–D543

    Article  PubMed  Google Scholar 

  • de Magalhães JP, Costa J, Church GM (2007) An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. J Gerontol Ser A: Biol Sci Med Sci 62:149–160

    Article  Google Scholar 

  • Deeming DC, Birchard GF, Crafer R, Eady PE (2006) Egg mass and incubation period allometry in birds and reptiles: effects of phylogeny. J Zool 270:209–218

    Article  Google Scholar 

  • Dial KP (2003) Evolution of avian locomotion: Correlates of flight style, locomotor modules, nesting biology, body size, development, and the origin of flapping flight. Auk 120:941–952

    Google Scholar 

  • Dickison MR (2007) The allometry of giant flightless birds. Dissertation, Department of Biology. Duke University, Durham

    Google Scholar 

  • Dobson FS (2007) A lifestyle view of life-history evolution. Proc Natl Acad Sci 104:17565–17566

    Article  PubMed  CAS  Google Scholar 

  • Dobson FS, Jouventin P (2007) How slow breeding can be selected in seabirds: testing Lack’s hypothesis. Proc Roy Soc B-Biol Sci 274:275–279

    Article  Google Scholar 

  • Dol’nik VR (2000) Allometry of reproduction in poikilotherm and homoiotherm vertebrates. Izvestiya Akademii Nauk Seriya Biologicheskaya 27:702–712

    Google Scholar 

  • Dunning JB (1992) CRC handbook of avian body masses. CRC Press LLC, Bosa Raton

    Google Scholar 

  • Ernest SKM, Enquist BJ, Brown JH, Charnov EL, Gillooly JF, Savage V, White EP, Smith FA, Hadly EA, Haskell JP, Lyons SK, Maurer BA, Niklas KJ, Tiffney B (2003) Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecol Lett 6:990–995

    Article  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Felsenstein J (1988) Phylogenies and quantitative characters. Annu Rev Ecol Syst 19:445–471

    Article  Google Scholar 

  • Figuerola J, Green A (2006) A comparative study of egg mass and clutch size in the Anseriformes. J Ornithol 147:57–68

    Article  Google Scholar 

  • Franklin DC, Wilson KJ (2003) Are low reproductive rates characteristic of New Zealand’s native terrestrial birds? Evidence from the allometry of nesting parameters in altricial species. N Z J Zool 30:185–204

    Article  Google Scholar 

  • Gale T (2003) Grzimek’s animal life encyclopedia. Animal Encyclopedia

  • Gill BJ (2000) Morphometrics of moa eggshell fragments (Aves : Dinornithiformes) from Late Holocene dune-sands of the Karikari Peninsula, New Zealand. J R Soc N Z 30:131–145

    Article  Google Scholar 

  • Gill BJ (2006) A catalogue of moa eggs (Aves: Dinornithiformes). Rec Auckl Mus 43:55–80

    Google Scholar 

  • Gill BJ (2007) Eggshell characteristics of moa eggs (Aves : Dinornithiformes). J R Soc N Z 37:139–150

    Article  Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251

    Article  PubMed  CAS  Google Scholar 

  • Gillooly J, Charnov E, West G, Savage V, Brown J (2002) Effects of size and temperature on developmental time. Nature 417:70–73

    Article  PubMed  CAS  Google Scholar 

  • Haddrath O, Baker AJ (2001) Complete mitochondrial DNA geonome sequences of extinct birds: ratite phylogenetics and the vicariance biogeography hypothesis. Proc Roy Soc B-Biol Sci 268:939–945

    Article  CAS  Google Scholar 

  • Harshman J, Braun EL, Braun MJ, Huddleston CJ, Bowie RCK, Chojnowski JL, Hackett SJ, Han K-L, Kimball RT, Marks BD, Miglia KJ, Moore WS, Reddy S, Sheldon FH, Steadman DW, Steppan SJ, Witt CC, Yuri T (2008) Phylogenomic evidence for multiple losses of flight in ratite birds. Proc Natl Acad Sci USA 105:13462–13467

    Article  PubMed  CAS  Google Scholar 

  • Heather B, Robertson H (2000) The field guide to the birds of New Zealand. Viking, Auckland

  • Heinroth O (1922) Die Beziehungen zwischen Vogelgewicht, Eigewicht, Gelegegewicht und Brutdauer. J Ornithol 70:172–275

    Article  Google Scholar 

  • Hemmingsen AM (1960) Energy metabolism as related to body size and respiratory surfaces and its evolution. Rep Steno Memorial Hospital Nordisk Insulin Laboratorium 9:1–110

    Google Scholar 

  • Hendriks AJ, Mulder C (2008) Scaling of offspring number and mass to plant and animal size: model and meta-analysis. Oecologia 155:705–716

    Article  PubMed  Google Scholar 

  • Heusner AA (1991) Size and power in mammals. J Exp Biol 160:25–54

    PubMed  CAS  Google Scholar 

  • Holdaway RN, Jacomb C (2000) Rapid extinction of the moas (Aves: Dinornithiformes): model, test, and implications. Science 287:2250–2254

    Article  PubMed  CAS  Google Scholar 

  • Hoyo Jd, Elliott A, Sargatal J (eds) (1992) Handbook of the birds of the world. Lynx Editions, Barcelona

    Google Scholar 

  • Huynen L, Millar CD, Scofield RP, Lambert DM (2003) Nuclear DNA sequences detect species limits in ancient moa. Nature 425:175–178

    Article  PubMed  CAS  Google Scholar 

  • Huynen L, Gill BJ, Millar CD, Lambert DM (2010) Ancient DNA reveals extreme egg morphology and nesting behavior in New Zealand’s extinct moa. Proc Natl Acad Sci USA 107:16201–16206

    Article  PubMed  CAS  Google Scholar 

  • Ipek A, Dikmen BY (2007) The relationship between growth traits and egg weight in pheasants (P. colchicus). J Biol Environ Sci 1:117–120

    Google Scholar 

  • Iverson JB (1992) Correlates of reproductive output in turtles (Order Testudines). Herpetol Monogr 6:25–42

    Article  Google Scholar 

  • Jamieson IG, Ryan CJ (2000) Increased egg infertility associated with translocating inbred takahe (Porphyrio hochstetteri) to island refuges in New Zealand. Biol Conserv 94:107–114

    Article  Google Scholar 

  • Jenkins JM (1979) Natural history of the Guam rail. Condor 81:404–408

    Article  Google Scholar 

  • Jetz W, Sekercioglu CH, Böhning-Gaese K (2008) The worldwide variation in avian clutch size across species and space. PLoS Biol 6:2650–2657

    Article  PubMed  CAS  Google Scholar 

  • Jones P, Schubel S, Jolly J, Brooke MdL, Vickery J (1995) Behaviour, natural history, and annual cycle of the Henderson Island rail Porzana atra (Aves: Rallidae). Biol J Linn Soc 56:167–183

    Article  Google Scholar 

  • Josef F (2010) Rowi—the rarest of them all. In: Do conservation (ed) Department of Conservation, Westland Tai poutini Conservancy, Hokitika, New Zealand

  • Kimwele CN, Graves JA (2003) A molecular genetic analysis of the communal nesting of the ostrich (Struthio camelus). Mol Ecol 12:229–236

    Article  PubMed  CAS  Google Scholar 

  • Lee WG, Jamieson IG (eds) (2001) The Takahe: fifty years of conservation management and research. University of Otago Press, Dunedin

  • Lewin V (1963) Reproduction and development of young in a population of California quail. Condor 65:249–278

    Article  Google Scholar 

  • Linstedt SL, Calder WA (1981) Body size, physiological time, and longevity of homeothermic animals. Q Rev Biol 56:1–16

    Article  Google Scholar 

  • Lislevand T, Figuerola J, Székely T (2009) Evolution of sexual size dimorphism in grouse and allies (Aves: Phasianidae) in relation to mating competition, fecundity demands and resource division. J Evol Biol 22:1895–1905

    Article  PubMed  CAS  Google Scholar 

  • Livezey BC (2003) Evolution of flightlessness in rails (Gruiformes: Rallidae): phylogenetic, ecomorphological, and ontogenetic perspectives. Ornithol Monogr:iii-654

  • Livezey BC, Zusi RL (2007) Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool J Linn Soc 149:1–95

    Article  PubMed  Google Scholar 

  • Martin TE, Li P (1992) Life history traits of open- vs. cavity-nesting birds. Ecology 73:579–592

    Article  Google Scholar 

  • Martins EP, Diniz-Filho JAF, Housworth EA (2002) Adaptive constraints and the phylogenetic comparative method: a computer simulation test. Evolution 56:1–13

    PubMed  Google Scholar 

  • McLennan JA, Dew L, Miles J, Gillingham N, Waiwai R (2004) Size matters: predation risk and juvenile growth in North Island brown kiwi (Apteryx mantelli). N Z J Ecol 28:241–250

    Google Scholar 

  • McNab BK (2002) The physiological ecology of vertebrates: a view from energetics. Cornell University Press, Ithaca, New York

    Google Scholar 

  • McNab BK (2006) The energetics of reproduction in endotherms and its implication for their conservation. Integr Comp Biol 46:1159–1168

    Article  PubMed  Google Scholar 

  • McNab BK, Ellis HI (2006) Flightless rails endemic to islands have lower energy expenditures and clutch sizes than flighted rails on islands and continents. Comp Biochem Physiol-Part A: Mol Integr Physiol 145:295–311

    Article  Google Scholar 

  • Miller B, Mullette KJ (1985) Rehabilitation of an endangered australian bird: the Lord Howe Island woodhen Tricholimnas sylvestris (Selater). Biol Conserv 34:55–95

    Article  Google Scholar 

  • Montes L, Le Roy N, Perret M, De Buffrenil V, Castanet J, Cubo J (2007) Relationships between bone growth rate, body mass and resting metabolic rate in growing amniotes: a phylogenetic approach. Biol J Linn Soc 92:63–76

    Article  Google Scholar 

  • Motulsky H, Christopoulos A (2004) Fitting models to biological data using linear and nonlinear regression. Oxford University Press, Oxford

    Google Scholar 

  • Naranjo LG (1986) Aspects of the biology of the horned screamer in southwestern Colombia. Willson Bull 98:243–256

    Google Scholar 

  • Navarro JL, Martella MB (2002) Reproductivity and raising of greater rhea (Rhea americana) and lesser rhea (Pterocnemia pennata)—a review. Arch Gefluegelkd 66:124–132

    Google Scholar 

  • Newton I (1979) Population ecology of raptors. T & AD Poyser Ltd., Berkhampsted

    Google Scholar 

  • Palkovacs EP (2003) Explaining adaptive shifts in body size on islands: a life history approach. Oikos 103:37–44

    Article  Google Scholar 

  • Pereira SL, Baker AJ (2006) A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock. Mol Biol Evol 23:1731–1740

    Article  PubMed  CAS  Google Scholar 

  • Rahn H, Paganelli CV, Ar A (1975) Relation of avian egg weight to body weight. Auk 92:750–765

    Article  Google Scholar 

  • Reiss MJ (1985) The allometry of reproduction—why larger species invest relatively less in their offspring. J Theor Biol 113:529–544

    Article  Google Scholar 

  • Ricklefs RE (2010) Life-history connections to rates of aging in terrestrial vertebrates. Proc Natl Acad Sci 107:10314–10319

    Article  PubMed  CAS  Google Scholar 

  • Robertson HA, Colbourne RM (2004) Survival of little spotted kiwi (Apteryx owenii) on Kapiti Island. Notornis 51:161–163

    Google Scholar 

  • Rohlf FJ (2006) A comment on phylogenetic correction. Evolution 60:1509–1515

    Article  PubMed  Google Scholar 

  • Rohwer FC (1988) Inter- and intraspecific relationships between egg size and clutch size in waterfowl. Auk 105:161–176

    Google Scholar 

  • Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds: a study in molecular evolution. Yale University Press, New Haven, Connecticut

    Google Scholar 

  • Sibly RM, Brown JH (2007) Effects of body size and lifestyle on evolution of mammal life histories. Proc Natl Acad Sci USA 104:17707–17712

    Article  PubMed  CAS  Google Scholar 

  • Sick H (1985) Ordem rheiformes. Orintologia Brasileira. Uma introducao. Univ de Brasilia, Brasilia

  • Smith RJ (2009) Use and misuse of the reduced major axis for line-fitting. Am J Phys Anthropol 140:476–486

    Article  PubMed  Google Scholar 

  • Thorbjarnarson JB (1996) Reproductive characteristics of the order Crocodylia. Herpetologica 52:8–24

    Google Scholar 

  • Trevelyan R, Read AF (1989) Nest predators and the evolution of avian reproductive strategies: a comparison of Australian and New Zealand birds. Oecologia 81:274–278

    Google Scholar 

  • Turvey ST, Holdaway RN (2005) Postnatal ontogeny, population structure, and extinction of the giant moa Dinornis. pp 70–86

  • Turvey ST, Green OR, Holdaway RN (2005) Cortical growth marks reveal extended juvenile development in New Zealand moa. Nature 435:940–943

    Article  PubMed  CAS  Google Scholar 

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259–291

    Article  PubMed  Google Scholar 

  • Werner J, Griebeler EM (2011) Reproductive biology and its impact on body size: comparative analysis of mammalian, avian and dinosaurian reproduction. PLoS ONE 6:e28442

    Article  PubMed  CAS  Google Scholar 

  • Williams GC (1966) Natural selection, the costs of reproduction, and a refinement of lack’s principle. Am Nat 100:687–690

    Article  Google Scholar 

  • Wilmshurst JM, Anderson AJ, Higham TFG, Worthy TH (2008) Dating the late prehistoric dispersal of Polynesians to New Zealand using the commensal Pacific rat. Proc Natl Acad Sci USA 105:7676–7680

    Article  PubMed  CAS  Google Scholar 

  • Wood JR (2007) Moa gizzard content analyses: Further information on the diets of Dinornis robustus and Emeus crassus, and the first evidence for the diet of Pachyornis elephantopus (Aves: Dinornithiformes). Rec Canterb Mus 21:27–39

    Google Scholar 

  • Wood JR (2008) Moa (Aves: Dinornithiformes) nesting material from rockshelters in the semi-arid interior of South Island, New Zealand. J R Soc N Z 38:115–129

    Article  Google Scholar 

  • Wood JR, Rawlence NJ, Rogers GM, Austin JJ, Worthy TH, Cooper A (2008) Coprolite deposits reveal the diet and ecology of the extinct New Zealand megaherbivore moa (Aves, Dinornithiformes). Quat Sci Rev 27:2593–2602

    Article  Google Scholar 

  • Worthy TH, Holdaway RN (1999) A preliminary report on the nesting habits of moas on the East Coast of the North Island. Notornis 46:457–460

    Google Scholar 

  • Worthy TH, Holdaway RN (2002) The lost world of the moa. Prehistoric life of New Zealand. Indiana University Press, Bloomigton

    Google Scholar 

Download references

Acknowledgments

We especially thank two anonymous reviewers and the members of our working group for their valuable comments on an earlier version of this manuscript. We are grateful to Jessica Mitchell and Ariana Macon for some linguistic improvements. This paper is part of the PhD thesis of JW. The project was funded by the German Research Foundation (grant GR 2625/2-1). This is contribution number 118 of the DFG Research Unit 533 “Biology of the Sauropod Dinosaurs: The Evolution of Gigantism”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Werner.

Appendix

Appendix

See Tables 5, 6, 7, 8 and 9 below.

Table 5 Body mass (BM), egg mass (EM), clutch mass (CM) and annual clutch mass (ACM) for the 126 taxa used in this study
Table 6 Results of the SMA regression analyses carried out for body mass against several reproductive traits for Anseriformes and Galliformes (r-model) and Falconiformes and Procellariiformes (K-model)
Table 7 Model equations
Table 8 Residual values and relative fits of rails, ratites and moa for the r-model
Table 9 Residual values and relative fits of rails, ratites and moa for the K-model

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, J., Griebeler, E.M. Reproductive investment in moa: a K-selected life-history strategy?. Evol Ecol 26, 1391–1419 (2012). https://doi.org/10.1007/s10682-011-9552-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-011-9552-0

Keywords

Navigation