Skip to main content
Log in

Substitution of Hordeum marinum ssp. gussoneanum chromosome 7HL into wheat homoeologous group-7

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Ditelosomic (Dt) 7HLmar(7D) and monotelosomic (Mt) 7HLmar(7A) and 7HLmar(7B) wheat–barley substitution lines were developed by crossing monosomic 7A, 7B and 7D lines of common wheat cv. Saratovskaya 29 with disomic wheat–barley addition lines (2n = 44) that carry telocentric chromosomes 7HLmar from Hordeum marinum ssp. gussoneanum 4×. Genomic in situ hybridisation confirmed the presence of barley chromosomes in the wheat genome. The compensating ability of the telosome in each combination was assessed by its transmission rate to progenies of plants with 2n = 41 + t chromosomes. Seed set and transmission rates of the telosome depended on the identity of the competing wheat homoeologue. Of the three chromosomes wheat, the telosome 7HLmar compensated better for chromosome 7D and poorly for 7B. These and other data are discussed with respect to the phylogenetic relationships between the wheat chromosomes of group 7 and the chromosome of H. marinum, and the practical utility of these lines for wheat improvement is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez JB, Ballesteros J, Sillero JA, Martin LM (1992) Tritordeum: a new crop of potential importance in the food industry. Hereditas 116:193–197

    Google Scholar 

  • Cabrera A, Fribe B, Jiang J, Gill BS (1995) Characterization of Hordeum chilense chromosomes by C-banding and in situ hybridization using highly repeated DNA probes. Genome 38:435–442

    Article  PubMed  CAS  Google Scholar 

  • Cattivelli L, Baldi P, Crosatti C, Di Fonzo N, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM (2002) Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol 48:649–665

    Article  CAS  Google Scholar 

  • Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite AJ, von Bothmer R, Colmer TD (2003) Diversity in root aeration traits associated with waterlogging tolerance in the genus Hordeum. Funct Plant Biol 30:875–889

    Article  Google Scholar 

  • Hernández P, Dorado G, Prieto P, Giménez MJ, Ramírez MC, Laurie DA, Snape JW, Martín A (2001) A core genetic map of Hordeum chilense and comparisons with maps of barley (Hordeum vulgare) and wheat (Triticum aestivum). Theor Appl Genet 102:1259–1264

    Article  Google Scholar 

  • Hohmann U, Graner A, Endo TR, Gill BS, Herrmann RG (1995) Comparison of wheat physical maps with barley linkage maps for group 7 chromosome. Theor Appl Genet 91:618–629

    CAS  Google Scholar 

  • Islam AKMR (1983) Ditelosomic additions of barley chromosomes to wheat. In: Sakamoto S (ed) Proceedings of the 6th international wheat genetic symposium, Faculty of Agriculture, Kyoto University, Kyoto, pp 233–238

    Google Scholar 

  • Islam AKMR (2002) Coordinator’s report: wheat–barley genetic stocks. Barley Genet Newslett 32:178

    Google Scholar 

  • Islam AKMR, Shepherd KW (1992) Substituting ability of individual barley chromosomes for wheat chromosomes. 1. Substitutions involving barley chromosomes 1, 3 and 6. Plant Breed 109:141–150

    Article  Google Scholar 

  • Islam AKMR, Shepherd KW (1993) Substitution of barley chromosome 4 for group 4 homoeologous of wheat. In: Li ZS, Xin ZY (eds) Proceedings of the 8th international wheat genetic symposium, China Agricultural Scientech Press, Beijing, pp 141–144

    Google Scholar 

  • Islam S, Malik AI, Islam AKMR, Colmer TD (2007) Salt tolerance in a Hordeum marinumTriticum aestivum amphiploid, and its parents. J Exp Bot 58:1219–1229

    Article  PubMed  CAS  Google Scholar 

  • Linde-Laursen I, Heslop-Harrison JS, Shepherd KW, Taketa S (1997) The barley genome and its relationship with the wheat genome. A survey with an internationally agreed recommendation for barley chromosome nomenclature. Hereditas 126:1–16

    Article  CAS  Google Scholar 

  • Malik AI, English JP, Colmer TD (2009) Tolerance of Hordeum marinum accessions to O2 deficiency, salinity and these stresses combined. Ann Bot 103:237–248

    Article  PubMed  CAS  Google Scholar 

  • McDonald MP, Galwey NW, Colmer TD (2001) Waterlogging tolerance in the tribe Triticeae: the adventitious roots of Critesion marinum have a relatively high porosity and a barrier to radial oxygen loss. Plant Cell Environ 24:585–596

    Article  Google Scholar 

  • Miller TE, Reader SM, Chapman V (1982) The addition of Hordeum chilense chromosomes to wheat. In: Broerjes C (ed) Proceedings of international symposium on EUCARPIA on induced variability in plant breeding, Pudoc, Wageningen, pp 79–81

    Google Scholar 

  • Miller TE, Reader SM, Ainsworth CC (1985) A chromosome of Hordeum chilense homoeologous to group 7 of wheat. Can J Genet Cytol 27:101–104

    Google Scholar 

  • Molnár I, Ling G, Dulai S, Nagy E, Molnár-Láng M (2007) Ability of chromosome 4H to compensate for 4D in response to drought stress in a newly developed and indentified wheat–barley 4H(4D) disomic substitution line. Plant Breed 126:367–374

    Article  Google Scholar 

  • Molnár-Láng M, Line G, Logojan A, Sutka J (2000) Production and meiotic pairing behaviour new hybrids of winter wheat (Triticum aestivum) × winter barley (Hordeum vulgare). Genome 43:1045–1054

    PubMed  Google Scholar 

  • Mukai Y, Gill BS (1991) Detection of barley chromatin added to wheat by genomic in situ hybridization. Genome 34:448–452

    Article  Google Scholar 

  • Murai K, Koba T, Shimada T (1997) Effects of barley chromosome on heading characters in wheat–barley chromosome addition lines. Euphytica 96:281–287

    Article  Google Scholar 

  • Numerova OM, Pershina LA, Salina EA, Shumny VK (2004) Barley chromosome identification using genomic in situ hybridization in the genome of backcrossed progeny of barley–wheat amphiploids [Hordeum geniculatum All. (2n = 28) × Triticum aestivum L. (2n = 42)] (2n = 70). Russ J Genet 40:1229–1233

    Article  CAS  Google Scholar 

  • Pershina LA, Numerova OM, Belova LI, Devyatkina EP, Shumny VK (1988) Fertility in barley × wheat hybrids H. geniculatum All. × T. aestivum L., their regenerants and hybrid progeny of backcrosses to T. aestivum. Cereal Res Commun 16:157–163

    Google Scholar 

  • Pershina LA, Numerova OM, Belova LI, Devyatkina EP, Rakovtseva TS, Shumny VK (2004) Expression of fertility during morphogenesis in self-pollinated backcrossed progenies of barley–wheat amphiploids [H. geniculatum All. (2n = 28) × T. aestivum L. (2n = 42)] (2n = 70). Russ J Genet 40:636–641

    Article  CAS  Google Scholar 

  • Riley R, Kimber G (1966) The transfer of alien genetic variation to wheat. In: Report of Plant Breeding Institute 1964–1965, Cambridge, pp 6–36

  • Said M, Recio R, Cabrera A (2012) Development and characterisation of structural changes in chromosome 3Hch from Hordeum chilense in common wheat and their use in physical mapping. Euphytica. doi:10.1007/s10681-012-0712-2

    Google Scholar 

  • Sears ER (1953) Nullisomic analysis in common wheat. Am Nat 87:245–252

    Article  Google Scholar 

  • Shepherd KW, Islam AKMR (1992) Progress in the production of wheat–barley addition and recombination lines and their use in mapping the barley genome. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. CAB International, Wallingford, pp 99–114

    Google Scholar 

  • Shi F, Endo TR (2000) Genetic induction of chromosomal rearrangements in barley chromosome 7H added to common wheat. Chromosoma 109:358–363

    Article  PubMed  CAS  Google Scholar 

  • Szakács É, Molnár-Láng M (2007) Development and molecular cytogenetic identification of new winter wheat/winter barley (Martonvásári 9 kr1/Igri) disomic addition lines. Genome 50:43–50

    Article  PubMed  Google Scholar 

  • Szakács É, Molnár-Láng M (2010) Identification of new winter wheat–winter barley addition lines (6HS and 7H) using fluorescence in situ hybridization and the stability of the whole ‘Martonvásári 9 kr1’—‘Igri’ addition set. Genome 53:35–44

    Article  PubMed  Google Scholar 

  • Taketa S, Takeda K (2001) Production and characterization of a complete set of wheat–wild barley (Hordeum vulgare ssp. spontaneum) chromosome addition lines. Breed Sci 51:199–206

    Article  CAS  Google Scholar 

  • Trubacheeva NV, Badaeva ED, Adonina IG, Belova LI, Devyatkina EP, Pershina LA (2008) Construction and molecular and cytogenetic analyses of euploid (2n = 42) and telocentric addition (2n = 42 + 2t) alloplasmic lines (Hordeum marinum subsp. gussoneanum)—Triticum aestivum. Russ J Genet 44:67–73

    Article  CAS  Google Scholar 

  • Tsujimoto H, Mukai Y, Akagawa K, Nagaki K, Fujigaki J, Yamamoto M, Sasakuma T (1997) Identification of individual barley chromosomes based on repetitive sequences: conservative distribution of Afa-family repetitive sequences on the chromosome of barley and wheat. Genes Genet Syst 72:303–309

    Article  PubMed  CAS  Google Scholar 

  • Unrau J (1959) Cytogenetics and wheat breeding. In: Proceedings of the 10th international congress of genetics, vol 1. Montreal, pp 129–141

  • von Bothmer R, Jacobsen N, Baden C, Jørgensen R, Linde-Laursen I (1991) An ecogeographical study of the genus Hordeum. In: IBPGR, Rome, p 127

  • Wang ML, Barkley NA, Yu JK, Dean RE, Newman ML, Sorells ME, Pederson G (2005) Transfer of simple sequence repeat (SSR) markers from major cereal crops to minor grass species for germplasm characterization and evolution. Plant Genet Resour 3:45–57

    Article  CAS  Google Scholar 

  • Yang YF, Furuta Y, Fukatani Y, Islam AKMR (2000) Compensating ability in pollen fertilization between group-6 and -7 homoeologous chromosomes of barley and wheat. Genes Genet Syst 75:251–258

    Article  PubMed  CAS  Google Scholar 

  • Yuan YP, Chen X, Xiao SH, Islam AKMR, Xin ZY (2003) Identification of wheat–barley 2H alien substitution lines. Acta Bot Sin 45:1096–1102

    CAS  Google Scholar 

  • Zou H, Wu Y, Liu H, Lin Z, Ye X, Chen X, Yuan Y (2012) Development and identification of wheat–barley 2H chromosome translocation lines carrying the Isa gene. Plant Breed 131:69–74

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Russian Foundation for Basic Research (11-04-00806_a), the Program of the Siberian Branch of the Russian Academy of Science in cooperation with the Siberian Branch of the Russian Agricultural Academy (No. 60), and the Integration Program of the Siberian Branch of the Russian Academy of Sciences (No. 61).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana Efremova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efremova, T., Arbuzova, V., Trubacheeva, N. et al. Substitution of Hordeum marinum ssp. gussoneanum chromosome 7HL into wheat homoeologous group-7. Euphytica 192, 251–257 (2013). https://doi.org/10.1007/s10681-012-0843-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0843-5

Keywords

Navigation