Skip to main content
Log in

Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Phosphorus deficiency is a primary constraint to soybean productivity in acid and calcareous soils. Our aim was to map quantitative trait loci (QTL) controlling phosphorus deficiency tolerance using 152 recombinant inbred lines derived from a cross between the P stress tolerant variety Nannong94-156 and the P stress sensitive variety Bogao. Five traits were used as parameters to evaluate phosphorus deficiency tolerance at seedling stage under different phosphorus levels in experiments 2005 and 2006. As a result, thirty-four additive QTLs were detected on nine linkage groups, with corresponding contribution ratios of 6.6–19.3%. There were three clusters of QTL found in genomic regions S506-Satt534 (on linkage group B2-1), Sat_183-Satt274 (on linkage group D1b + W), and Sat_185-Satt012 (on linkage group G). The locus flanked by Sat_183-Satt274 on linkage group D1b + W was coincident with four previously discovered QTLs with phosphorus efficiency. Another interesting locus flanked by Sat_185-Satt012 on linkage group G was detected across years. The identified QTL will be useful to improve the stress resistance of soybean against a complex nutritional disorder caused by phosphorus deficiency. In addition, more QTLs were detected under low phosphorus condition and some QTLs were detected that specifically expressed under different phosphorus levels. These particular QTLs could help provide greater understanding of the genetic basis of phosphorus efficiency in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

RIL:

Recombinant inbred line

SDW:

Shoot dry weight

RDW:

Root dry weight

TDW:

Total dry weight

PAE:

Phosphorus acquisition efficiency

PUE:

Phosphorus use efficiency

APA:

Acid phosphatase activity

cM:

Centimorgan

References

  • Beebe SE, Rojas-Pierce M, Yan X, Blair MW, Pedraza F, Munoz F, Tohme J, Lynch JP (2006) Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Sci 46:413–423. doi:10.2135/cropsci2005.0226

    Article  CAS  Google Scholar 

  • Cakmak I (2002) Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant Soil 247:3–24. doi:10.1023/A:1021194511492

    Article  CAS  Google Scholar 

  • Cao G, Zhu J, He C, Gao Y, Yan J, Wu P (2001) Impact of epistasis and QTL × environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theor Appl Genet 103:153–160. doi:10.1007/s001220100536

    Article  CAS  Google Scholar 

  • Chaubey CN, Senadhira D, Gregorio GB (1994) Genetic analysis of tolerance for phosphorous deficiency in rice (Oryza sativa L.). Theor Appl Genet 89:313–317. doi:10.1007/BF00225160

    Article  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative triat mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Cui SY, Geng LY, Meng QC, Yu DY (2007) QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L.) during seedling stage. Acta Agron Sin 33:378–383

    CAS  Google Scholar 

  • Furlani MC, Furlani PR, Tanaka RT, Mascarenhas HAA, Delgado MDP (2002) Variability of soybean germplasm in relation to phosphorus uptake and use efficiency. Scientia Agricola 59:529–536. doi:10.1590/S0103-90162002000300018

    Article  CAS  Google Scholar 

  • Geng LY, Cui SY, Zhang D, Xing H, Gai JY, Yu DY (2007) QTL mapping and epistasis analysis for P-efficiency in soybean. Soybean Sci 26:460–466

    Google Scholar 

  • Gourley CJP, Allan DL, Russelle MP (1994) Plant nutrient efficiency: a comparison of definitions and suggested improvement. Plant Soil 158:29–37. doi:10.1007/BF00007914

    Article  CAS  Google Scholar 

  • Holland JB (1998) Computer note. EPISTACY: a SAS program for detecting two-locus epistatic interactions using genetic marker information. Am Genet Assoc 89:374–375

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181. doi:10.1016/0888-7543(87)90010-3

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Pinson SRM, Park WD, Paterson AH, Stansel JW (1997) Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145:453–465

    PubMed  CAS  Google Scholar 

  • Li Z, Jakkula L, Hussey RS, Tamulonis JP, Boerma HR (2001) SSR mapping and confirmation of the QTL from PI96354 conditioning soybean resistance to southern root-knot nematode. Theor Appl Genet 103:1167–1173. doi:10.1007/s001220100672

    Article  CAS  Google Scholar 

  • Li YD, Wang YJ, Tong YP, Gao JG, Zhang JS, Chen SY (2005) QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L. Merr.). Euphytica 142:137–142. doi:10.1007/s10681-005-1192-4

    Article  CAS  Google Scholar 

  • Lin S, Cianzio S, Shoemaker R (1997) Mapping genetic loci for iron deficiency chlorosis in soybean. Mol Breed 3:219–229. doi:10.1023/A:1009637320805

    Article  CAS  Google Scholar 

  • Lin SF, Baumer J, Ivers D, Cianzio S, Shoemaker RC (2000) Nutrient solution screening of Fe chlorosis resistance in soybean evaluated by molecular characterization. J Plant Nutr 23:1915–1928. doi:10.1080/01904160009382153

    Article  CAS  Google Scholar 

  • Liu G, Yang J, Xu H, Zhu J (2007) Influence of epistasis and QTL × environment interaction on heading date of rice (Oryza sativa L.). J Genet Genomics 34:608–615. doi:10.1016/S1673-8527(07)60069-1

    Article  PubMed  Google Scholar 

  • López-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129:244–256. doi:10.1104/pp.010934

    Article  PubMed  CAS  Google Scholar 

  • Ma Z, Baskin TI, Brown KM, Lynch JP (2003) Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiol 131:1381–1390. doi:10.1104/pp.012161

    Article  PubMed  CAS  Google Scholar 

  • Mathew JP, Herbert SJ, Zhang S, Rautenkranz AAF, Litchfield GV (2000) Differential response of soybean yield components to the timing of light enrichment. Agron J 92:1156

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:l–l36. doi:10.1016/S0003-2670(00)88444-5

    Article  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325. doi:10.1093/nar/8.19.4321

    Article  PubMed  CAS  Google Scholar 

  • Ni JJ, Wu P, Senadhira D, Huang N (1998) Mapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet 97:1361–1369. doi:10.1007/s001220051030

    Article  CAS  Google Scholar 

  • Oelkers EH, Valsami JE (2008) Phosphate mineral reactivity and global sustainability. Elements 4:83–88. doi:10.2113/GSELEMENTS.4.2.83

    Article  CAS  Google Scholar 

  • Panthee DR, Pantalone VR, Sams CE, Saxton AM, West DR, Rayford WE (2004) Genomic regions governing soybean seed nitrogen accumulation. J Am Oil Chem Soc 81:77–81

    Article  CAS  Google Scholar 

  • Panthee DR, Pantalone VR, West DR, Saxton AM, Sams CE (2005) Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Sci 45:2015–2022. doi:10.2135/cropsci2004.0720

    Article  CAS  Google Scholar 

  • Reiter RS, Coors JG, Sussman MR, Gabelman WH (1991) Genetic analysis of tolerance to low-phosphorus stress in maize using restriction fragment length polymorphisms. Theor Appl Genet 82:561–568. doi:10.1007/BF00226791

    Article  CAS  Google Scholar 

  • Searle SR (1971) Linear models. Wiley, New York

    Google Scholar 

  • Shimizu A, Yanagihara S, Kawasaki S, Ikehashi H (2004) Phosphorus deficiency-induced root elongation and its QTL in rice (Oryza sativa L.). Theor Appl Genet 109:1361–1368. doi:10.1007/s00122-004-1751-4

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128. doi:10.1007/s00122-004-1602-3

    Article  PubMed  CAS  Google Scholar 

  • Steen I (1998) Phosphorus availability in the 21st century: management of a non-renewable resource. Phosphorus Potassium 217:25–31

    Google Scholar 

  • Su J, Xiao Y, Li M, Liu Q, Li B, Tong Y, Jia J, Li Z (2006) Mapping QTLs for phosphorus-deficiency tolerance at wheat seedling stage. Plant Soil 281:25–36. doi:10.1007/s11104-005-3771-5

    Article  CAS  Google Scholar 

  • Tesfaye M, Liu J, Allan DL, Vance CP (2007) Genomic and genetic control of phosphate stress in legumes. Plant Physiol 144:594–603. doi:10.1104/pp.107.097386

    Article  PubMed  CAS  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397. doi:10.1104/pp.010331

    Article  PubMed  CAS  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447. doi:10.1046/j.1469-8137.2003.00695.x

    Article  CAS  Google Scholar 

  • Wang DL, Zhu J, Li ZKL, Paterson AH (1999) Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264. doi:10.1007/s001220051331

    Article  Google Scholar 

  • Wang L, Liao H, Yan X, Zhuang B, Dong Y (2004) Genetic variability for root hair traits as related to phosphorus status in soybean. Plant Soil 261:77–84. doi:10.1023/B:PLSO.0000035552.94249.6a

    Article  CAS  Google Scholar 

  • Wang SC, Basten CJ, Zeng ZB (2005) Windows QTL cartographer 2.5. North Carolina State University, Raleigh, NC

    Google Scholar 

  • Wissuwa M, Yano M, Ae N (1998) Mapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet 97:777–783. doi:10.1007/s001220050955

    Article  CAS  Google Scholar 

  • Wissuwa M, Wegner J, Ae N, Yano M (2002) Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet 105:890–897. doi:10.1007/s00122-002-1051-9

    Article  PubMed  CAS  Google Scholar 

  • Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng XW (2003) Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol 132:1260–1670. doi:10.1104/pp.103.021022

    Article  PubMed  CAS  Google Scholar 

  • Yan X, Liao H, Trull MC, Beebe SE, Lynch JP (2001) Induction of a major leaf acid phosphatase does not confer adaptation to low phosphorus availability in common bean. Plant Physiol 125:1901–1911. doi:10.1104/pp.125.4.1901

    Article  PubMed  CAS  Google Scholar 

  • Yan X, Liao H, Beebe SE, Blair MW, Lynch JP (2004) QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant Soil 265:17–29

    Article  CAS  Google Scholar 

  • Yang J, Zhu J (2005) Methods for predicting superior genotypes under multiple environments based on QTL effects. Theor Appl Genet 110:1268–1274. doi:10.1007/s00122-005-1963-2

    Article  PubMed  Google Scholar 

  • Yu SB, Li JX, Xu CG, Tan YF, Li XH, Zhang Q (2002) Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor Appl Genet 104:619–625. doi:10.1007/s00122-001-0772-5

    Article  PubMed  CAS  Google Scholar 

  • Yue P, Arelli PR, Sleper DA (2001) Molecular characterization of resistance to Heterodera glycines in soybean PI 438489B. Theor Appl Genet 102:921–928. doi:10.1007/s001220000453

    Article  CAS  Google Scholar 

  • Zhu J (1995) Analysis of conditional genetic effects and variance components in developmental genetics. Genet Soc Am 141:1633–1639

    CAS  Google Scholar 

  • Zhu J, Kaeppler SM, Lynch JP (2005) Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theor Appl Genet 111:688–695. doi:10.1007/s00122-005-2051-3

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Mickelson SM, Kaeppler SM, Lynch JP (2006) Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Theor Appl Genet 113:1–10. doi:10.1007/s00122-006-0260-z

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National 973 Project (No.2004CB117206), National 863 Project(No. 2006AA10Z1C1), and National Natural Science Foundation of China (No.30771362).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyue Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Cheng, H., Geng, L. et al. Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage. Euphytica 167, 313–322 (2009). https://doi.org/10.1007/s10681-009-9880-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-009-9880-0

Keywords

Navigation