Skip to main content

Advertisement

Log in

Biofilm thickness measurement using an ultrasound method in a liquid phase

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this report, the development of an online, noninvasive, measurement method of the biofilm thickness in a liquid phase is presented. The method is based in the analysis of the ultrasound wave pulse-echo behavior in a liquid phase reproducing the real reactor conditions. It does not imply the removal of the biomass from the support or any kind of intervention in the support (pipes) to detect and perform the measurements (non-invasiveness). The developed method allows for its sensor to be easily and quickly mounted and unmounted in any location along a pipe or reactor wall. Finally, this method is an important innovation because it allows the thickness measurement of a biofilm, in liquid phase conditions that can be used in monitoring programs, to help in scheduling cleaning actions to remove the unwanted biofilm, in several application areas, namely in potable water supply pipes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angell, P., Arrage, A. A., Mittelmann, M. W., & White, D. C. (1993). Online, non-destructive biomass determination of bacterial biofilms by fluorimetry. Journal of Microbiological Methods, 18, 317–327.

    Article  CAS  Google Scholar 

  • Barbeau, J., Gauthier, C., & Payment, P. (1998). Biofilms, infectious agents, and dental unit waterlines: a review. Canadian Journal of Microbiology, 44(11), 1019–1028.

    Article  CAS  Google Scholar 

  • Bastos, F., Mesquita, R. B. R., Ferreira, J. R. M., Fernandes, S. M. V., Castro, P. M. L., & Rangel, A. O. S. S. (2002). On-line monitoring of a trickling filter during treatment of chlorobenzene contaminated waste. Proceedings of the International Specialized Conference on Biofilm Monitoring, Porto, March 17–20, 218–221.

  • Brito, A. G., & Melo, L. F. (1999). Mass transfer coefficients within anaerobic biofilms: effects of external liquid velocity. Water Research, 33(17), 3673–3678.

    Article  CAS  Google Scholar 

  • Carrión, M., Asaff, A., & Thalasso, F. (2003). Respiration rate measurement in a submerged fixed bed reactor. Water Science and Technology, 47(5), 201–204.

    Google Scholar 

  • Characklis, W. G. (1990). Laboratory biofilme reactors. In W. G. Charaklis, K. C. Marshall (Eds.), Biofilms. New York: Jonh Wiley and Sons.

  • Chenoweth, J. M. (1988). Liquid fouling monitoring equipment. In L. F. Melo, T. R. Bott, & C. A. Bernardo (Eds.), Fouling science and technology (pp. 49–65). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Cristiani, P., Perboni, G., Hilbert, L., Mollica, A., & Gubner, R. (2002). Experiences on MIC monitoring by electrochemical techniques. Proceedings of the International Specialized Conference on Biofilm Monitoring, Porto, March 17–20, 197–200.

  • Delille, A., Quilés, F., & Humbert, F. (2007). In situ monitoring of the nascent Pseudomonas fluorescens biofilm response to variations in the dissolved organic carbon level in low-nutrient water by attenuated total reflectance-Fourier transform infrared spectroscopy. Applied and Environmental Microbiology, 73, 5782–5788.

    Article  CAS  Google Scholar 

  • Dias, C. J. (1988). Guia Prático de Laboratório de Física. Faculdade de Ciências e Tecnologia—Universidade Nova de Lisboa

  • Flemming, H.-C. (2006). Biofouling: unexpected, underestimated, undertreated. Mülheim an der Ruhr: Biofilm Center. IWW Water Centre.

    Google Scholar 

  • Fonseca, A. C., Greenberg, A. R., & Hernandez, M. (2002). Real time biofilm detection using ultrasonic frequency-domain reflectometry (UFDR). Proceedings of the International Specialized Conference on Biofilm Monitoring, Porto, March 17–20.

  • Freitas dos Santos, L. M., Livingston, A. G. (1995). Membrane-attached biofilms for VOC wastewater treatment I: Novel in situ biofilm thickness measurement technique. Biotechnology and Bioengineering, 47(1), 82–89.

  • Gjaltema, A., & Griebe, T. (1995). Laboratory biofilm reactors and on-line monitoring: report of the discussion session. Water Science and Technology, 32(8), 257–261.

    Article  Google Scholar 

  • Haisch, C., & Niessner, R. (2007). Visualisation of transient processes in biofilms by optical coherence tomography. Water Research, 41, 2467–2472.

    Article  CAS  Google Scholar 

  • Janknecht, P., & Melo, L. F. (2004). Online biofilm monitoring. Reviews in Environmental Science and Biotechnology, 2, 269–283.

    Article  Google Scholar 

  • Jubilado, N. (2011). Desenvolvimento de um micro sensor para medição on-line da espessura de um biofilme em ambientes submersos. Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa. MSci. Thesis.

  • Kappelhof, J. W. N. M., Vrouwenvelder, H. S., Schaap, M., Kruithof, J.C., van der Kooij, D., & Schippers, J. C. (2002). An in situ biofouling monitor for membrane systems. Proceedings of the 5th Conference on Membranes in Drinking and Industrial Water Production (MDIW), Mulheim/Ruhr, September 22–26.

  • Klahre, J., & Flemming, H. (2000). Monitoring of biofouling in papermill process waters. Water Research, 34(14), 3657–3665.

    Article  CAS  Google Scholar 

  • Knudsen, J. G. (1981). Apparatus and techniques for measurement of fouling of heat transfer surfaces. In E. F. C. Somerscales & J. G. Knudsen (Eds.), Fouling of heat transfer equipment (p. 57). Washington: Hemisphere.

    Google Scholar 

  • Kujundzic, E., Fonseca, C., Evans, E., Peterson, M., Greenberg, A. R., & Hernandez, M. (2007). Ultrasonic monitoring of early stage biofilm growth on polymeric surfaces. Journal Microbiological Methods, 68, 458–467.

    Article  CAS  Google Scholar 

  • Lee, J.-H., Seo, Y., Lim, T.-S., Bishop, P. L., & Papautsky, I. (2007). MEMS needle-type sensor array for in situ measurements of dissolved oxygen and redox potential. Environmental Science and Technology, 41, 7857–7863.

    Article  CAS  Google Scholar 

  • Leitz, M., Tamachkiarow, A., Franke, H., & Grattan, K. T. V. (2002). Monitoring of biofilm growth using ATR-leaky mode spectroscopy. Journal of Physics D: Applied Physics, 35, 55–60.

    Article  CAS  Google Scholar 

  • Lewandowski, Z., & Boltz, J. P. (2011). Biofilms in water and wastewater treatment. Treatise on Water Science, 4, 529–570.

    Article  CAS  Google Scholar 

  • Lubbers, J., & Graaf, R. (1998). A simple and accurate formula for the sound velocity in water. Ultrasound in Medicine and Biology, 7(4), 1065–1068.

    Article  Google Scholar 

  • Ludensky, M. L. (1998). An automated system for biofilm monitoring. Journal of Industrial Microbiology and Biotechnology, 20(2), 109–115.

    Google Scholar 

  • Markx, G. H., & Kell, D. B. (1990). Dielectric spectroscopy as a tool for the measurement of the formation of biofilms and their removal by electrolytic cleaning pulses and biocides. Biofouling, 2, 211–227.

    Article  Google Scholar 

  • Matos, M., Pereira, M. A., Nicolau, A., Rodrigues, A. L., Brito, A. G., & Nogueira, R. (2012). Influence of carrier concentration on the control of Galactomyces geotrichum bulking and bacterial community of biofilm reactors. Desalination and Water Treatment, 41(1–3), 325–334.

    Article  CAS  Google Scholar 

  • Mattilasandholm, T., & Wirtanen, G. (1992). Biofilm formation in the industry—a review. Food Reviews International, 8(4), 573–603.

    Article  CAS  Google Scholar 

  • Maurício, R. (2009). Contribuição para o estudo de biofilmes de espessura controlada—Idade do biofilme. Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa. PhD Thesis.

  • Maurício, R., Dias, C. J., & Santana, F. (2006). Monitoring biofilm thickness using a non-destructive, on-line, electrical capacitance technique. Environmental Monitoring and Assessment, 119, 599–607.

    Article  Google Scholar 

  • Maurício, R., Jubilado, N., Dias, C. J, & Santana, F. (2012). Patent no. 106089 P.

  • Milferstedt, K., Pons, M.-N., & Morgenroth, E. (2006). Optical method for long-term and large-scale monitoring of spatial biofilm development. Biotechnology and Bioengineering, 94, 773–782.

    Article  CAS  Google Scholar 

  • Mollica, A. & Cristiani, P. (2003). On-line biofilm monitoring by “BIOX” electrochemical probe. Water Science and Technology, 47(5), 45–49.

  • Nivens, D. E., Chambers, J. Q., Anderson, T. R., & White, D. C. (1993). Long-term, on-line monitoring of microbial biofilms using a quartz crystal microbalance. Analytical Chemistry, 65, 65–69.

    Article  CAS  Google Scholar 

  • Nivens, D. E., Palmer, R. J., & White, D. C. (1995). Continuous nondestructive monitoring of microbial biofilms: a review of analytical techniques. Journal of Industrial Microbiology, 15, 263–276.

    Article  CAS  Google Scholar 

  • Nogueira, R., Elenter, D., Brito, A. G., Melo, L. F., Wagner, M., & Morgenroth, E. (2005). Evaluating heterotrophic growth in a nitrifying biofilm reactor using fluorescence in situ hybridization and mathematical modelling. Water Science and Technology, 52(7), 135–141.

    CAS  Google Scholar 

  • Pavanello, G., Faimali, M., Pittore, M., Mollica, A., Mollica, A., & Mollica, A. (2011). Exploiting a new electrochemical sensor for biofilm monitoring and water treatment optimization. Water Research, 45(4), 1651–1658.

    Article  CAS  Google Scholar 

  • Prest, E. I., Staal, M., Kuhl, M., van Loosdrecht, M. C. M., & Vrouwenvelder, J. S. (2012). Quantitative measurement and visualization of biofilm O2 consumption rates in membrane filtration systems. Journal of Membrane Science, 392, 66–75.

    Article  Google Scholar 

  • Rodrigues, A. L., Brito, A. G., Janknecht, P., Silva, J., Machado, A. V., & Nogueira, R. (2008). Characterization of biofilm formation on a humic material. The Journal of Industrial Microbiology and Biotechnology, 35(11), 1269–1276.

    Article  CAS  Google Scholar 

  • Santana, F. J. (1986). Contribuição para o Estudo da Modelação de Reactores de Biomassa fixa (Discos Biológicos). Faculdade de Ciências e Tecnologia—UNL.

  • Saxena, I., Sturman, P. J., & Costerton, J. W. (2002). Development and testing of a fiber-optic probe for biofilm detection and quantification. Proceedings of the International Specialized Conference on Biofilm Monitoring, Porto, March 17–20.

  • Schmid T. (2006). Photoacoustic spectroscopy for process analysis. Anal Bioanal Chem, 384(5), 1071–1086.

    Google Scholar 

  • Schmid, T., Panne, U., Haisch, C., & Niessner, R. (2003). Photoacoustic absorption spectra of biofilms. The Review of Scientific Instruments, 74, 755–757.

    Article  CAS  Google Scholar 

  • Schmid, T., Panne, U., Adams, J., & Niessner, R. (2004). Investigation of biocide efficacy by photoacoustic biofilm monitoring. Water Research, 38, 1189–1196.

    Article  CAS  Google Scholar 

  • Seymour, J. D., Codd, S. L., Gjersing, E. L., & Stewart, P. S. (2004). Magnetic resonance microscopy of biofilm structure and impact on transport in a capillary bioreactor. Journal of Magnetic Resonance, 167, 322–327.

    Article  CAS  Google Scholar 

  • Shemesh, H., Goertz, D. E., van der Sluis, L. W. M., de Jong, N., Wu, M. K., WesselinkShemesh, P. R., et al. (2007). High frequency ultrasound imaging of a single-species biofilm. Journal of Dentistry, 35, 673–678.

    Article  CAS  Google Scholar 

  • Tam, K., Kinsinger, N., Ayala, P., Qi, F., Shi, W., & Myung, N. V. (2007). Real-time monitoring of Streptococcus mutans biofilm formation using a quartz crystal microbalance. Caries Research, 41, 474–483.

    Article  CAS  Google Scholar 

  • Tamachkiarw, A., & Flemming, H. (2003). On line monitoring formation in a brewery water pipeline system with a fibre optical device. Water Science and Technology, 47, 19–24.

    Google Scholar 

  • Tinham, P., & Bott, T. R. (2003). Biofouling assessment using an infrared monitor. Water Science and Technology, 47(5), 39–43.

    CAS  Google Scholar 

  • Vanhooren, H., Van Hulle, S., De Pauw, D., & Vanrolleghem P. A. (2002) Monitoring and modelling a pilot-scale trickling filter using on-line off-gas analysis. Proceedings of the International Specialized Conference on Biofilm Monitoring, Porto, March 17–20.

  • Vrouwenvelder, J. S., Manolarakis, S. A., van der Hoek, J. P., van Paassen, J. A. M., van der Meer, W. G. J., van Agtmaal, J. M. C., et al. (2008). Quantitative biofouling diagnosis in full scale nanofiltration and reverse osmosis installations. Water Research, 42(19), 4856–4868.

    Article  CAS  Google Scholar 

  • Wolf, G., Crespo, J. G., & Reis, M. A. M. (2002). Optical and spectroscopic methods for biofilm examination and monitoring. Reviews in Environmental Science and Biotechnology, 1, 227–251.

    Article  Google Scholar 

  • Xavier, J. B., White, D. C., & Almeida, J. S. (2003). Automated biofilm morphology quantification from confocal laser scanning microscopy imaging. Water Science and Technology, 47, 31–37.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Maurício.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurício, R., Dias, C.J., Jubilado, N. et al. Biofilm thickness measurement using an ultrasound method in a liquid phase. Environ Monit Assess 185, 8125–8133 (2013). https://doi.org/10.1007/s10661-013-3160-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3160-0

Keywords

Navigation