Skip to main content
Log in

Expression of defence genes in stolbur phytoplasma infected tomatoes, and effect of defence stimulators on disease development

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

In tomato, the stolbur disease caused by ‘Candidatus Phytoplasma solani’ alters developmental processes resulting in malformations of both vegetative and reproductive organs, two stolbur phytoplasma strains PO and C induce mutually distinct symptoms. The aim of the present study was to determine the effect of stolbur phytoplasma-infection on the Salicylic (SA) and Jasmonic (JA) acids hormone signalling pathways and to assess whether pre-activation of these defence pathways could protect tomato against the stolbur disease development. Expression of SA- and JA-dependent marker genes was studied in tomato by qRT-PCR. Results indicated that the SA-mediated defence response was activated by the stolbur phytoplasma strains PO and C in contrast to the JA-dependent defence pathway which was repressed by strain PO but activated by strain C. The two stolbur strains, PO and C, generated different responses, suggesting that the two strains might have distinct virulence factors, in agreement with the fact that they induce distinctive symptoms. In stolbur PO-infected tomato, pre-activation of the JA-dependent defence pathway by methyl jasmonate (MeJA) before infection had no effect on the disease development whereas pre-activation of the SA-dependent defence pathway by treatment with benzothiadiazole (BTH) prior to graft-inoculation of the phytoplasma resulted in a minor delay in phytoplasma multiplication and symptom production. As grafting implicates a high inoculum as compared to insect inoculation, it would be of interest to test BTH treatment in natural conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad, J. N., Garcion, C., Teyssier, E., Hernould, M., Gallusci, P., Pracros, P., et al. (2013). Effects of stolbur phytoplasma infection on DNA methylation processes in tomato plants. Plant Pathology, 62(1), 205–216.

    Article  CAS  Google Scholar 

  • Bertaccini, A. (2007). Phytoplasmas: diversity, taxonomy, and epidemiology. Frontiers in Bioscience: A Journal and Virtual Library, 12, 673–689.

    Article  CAS  Google Scholar 

  • Block, A., Schmelz, E., O’Donnell, P. J., Jones, J. B., & Klee, H. J. (2005). Systemic acquired tolerance to virulent bacterial pathogens in tomato. Plant Physiology, 138(3), 1481–1490.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Boonrod, K., Munteanu, B., Jarausch, B., Jarausch, W., & Krczal, G. (2012). An immunodominant membrane protein (Imp) of « Candidatus Phytoplasma mali » binds to plant actin. Molecular Plant-Microbe Interactions, 25(7), 889–895.

    Article  PubMed  CAS  Google Scholar 

  • Bressan, A., & Purcell, A. H. (2005). Effect of benzothiadiazole on transmission of X-disease phytoplasma by the vector Colladonus montanus to Arabidopsis thaliana, a new experimental host plant. Plant Disease, 89(10), 1121–1124.

    Article  CAS  Google Scholar 

  • Buonaurio, R., Scarponi, L., Ferrara, M., Sidoti, P., & Bertona, A. (2002). Induction of Systemic Acquired Resistance in Pepper Plants by Acibenzolar-S-methyl against Bacterial Spot Disease. European Journal of Plant Pathology, 108(1), 41–49.

    Article  CAS  Google Scholar 

  • Cimerman, A., Arnaud, G., & Foissac, X. (2006). Stolbur Phytoplasma Genome Survey Achieved Using a Suppression Subtractive Hybridization Approach with High Specificity. Applied and Environmental Microbiology, 72(5), 3274–3283.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Contaldo, N., Bertaccini, A., Paltrinieri, S., Windsor, H. M., & Windsor, G. D. (2012). Axenic culture of plant pathogenic phytoplasmas. Phytopathologia Mediterranea, 51(3), 607–617.

    CAS  Google Scholar 

  • Crampton, B. G., Hein, I., & Berger, D. K. (2009). Salicylic acid confers resistance to a biotrophic rust pathogen, Puccinia substriata, in pearl millet (Pennisetum glaucum). Molecular Plant Pathology, 10(2), 291–304.

    Article  PubMed  CAS  Google Scholar 

  • D’Amelio, R., Marzachì, C., & Bosco, D. (2010). Activity of benzothiadiazole on chrysanthemum yellows phytoplasma (‘Candidatus Phytoplasma asteris’) infection in daisy plants. Crop Protection, 29(10), 1094–1099.

    Article  CAS  Google Scholar 

  • Darby, L. A., Ritchie, D. B., & Taylor, I. B. (1977). Isogenic lines of the tomato « Ailsa Craig. ». Annual Report Glasshouse Crops Research Institute, p. 168–184.

  • Fabre, A., Danet, J.-L., & Foissac, X. (2011). The stolbur phytoplasma antigenic membrane protein gene stamp is submitted to diversifying positive selection. Gene, 472(1–2), 37–41.

    Article  PubMed  CAS  Google Scholar 

  • Fidantsef, A. L., Stout, M. J., Thaler, J. S., Duffey, S. S., & Bostock, R. M. (1999). Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor II, and pathogenesis-related protein P4 in the tomato, Lycopersicon esculentum. Physiological and Molecular Plant Pathology, 54(3–4), 97–114.

    Article  CAS  Google Scholar 

  • Glazebrook, J. (2005). Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens. Annual Review of Phytopathology, 43(1), 205–227.

    Article  PubMed  CAS  Google Scholar 

  • Gundersen, D. E., & Lee, I.-M. (1996). Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer sets. Phytopathologia Mediterranea, 35, 144–151.

    CAS  Google Scholar 

  • Hossain, M. M., Sultana, F., Kubota, M., Koyama, H., & Hyakumachi, M. (2007). The Plant Growth-Promoting Fungus Penicillium simplicissimum GP17-2 Induces Resistance in Arabidopsis thaliana by Activation of Multiple Defense Signals. Plant and Cell Physiology, 48(12), 1724–1736.

    Article  PubMed  CAS  Google Scholar 

  • Jagoueix-Eveillard, S., Tarendeau, F., Guolter, K., Danet, J.-L., Bové, J. M., & Garnier, M. (2001). Catharanthus roseus Genes Regulated Differentially by Mollicute Infections. Molecular Plant-Microbe Interactions, 14(2), 225–233.

    Article  PubMed  CAS  Google Scholar 

  • Jarausch, W., Jarausch-Wehrheim, B., Danet, J. L., Broquaire, J. M., Dosba, F., Saillard, C., et al. (2001). Detection and Indentification of European Stone Fruit Yellows and Other Phytoplasmas in Wild Plants in the Surroundings of Apricot Chlorotic Leaf Roll-affected Orchards in Southern France. European Journal of Plant Pathology, 107, 209–217.

    Article  Google Scholar 

  • Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329.

    Article  PubMed  CAS  Google Scholar 

  • Kakizawa, S., Oshima, K., & Namba, S. (2006). Diversity and functional importance of phytoplasma membrane proteins. Trends in Microbiology, 14(6), 254–256.

    Article  PubMed  CAS  Google Scholar 

  • Latzel, V., Zhang, Y., Moritz, K. K., Fischer, M., & Bossdorf, O. (2012). Epigenetic variation in plant responses to defence hormones. Annals of Botany, 110(7), 1423–1428.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lawton, K. A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., et al. (1996). Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. The Plant Journal, 10(1), 71–82.

    Article  PubMed  CAS  Google Scholar 

  • MacLean, A. M., Sugio, A., Makarova, O. V., Findlay, K. C., Grieve, V. M., Tóth, R., et al. (2011). Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiology, 157(2), 831–841.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Marcone, C., Neimark, H., Ragozzino, A., Lauer, U., & Seemüller, E. (1999). Chromosome sizes of phytoplasmas composing major phylogenetic groups and subgroups. Phytopathology, 89(9), 805–810.

    Article  PubMed  CAS  Google Scholar 

  • Martinez de Ilarduya, O., Xie, Q., & Kaloshian, I. (2003). Aphid-induced defense responses in Mi-1-mediated compatible and incompatible tomato interactions. Molecular Plant-Microbe Interactions, 16(8), 699–708.

    Article  PubMed  CAS  Google Scholar 

  • Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H.-Y., Wei, W., Suzuki, S., et al. (2004). Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genetic, 36(1), 27–29.

    Article  CAS  Google Scholar 

  • Peña-Cortés, H., Fisahn, J., & Willmitzer, L. (1995). Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proceedings of the National Academy of Sciences of the United States of America, 92(10), 4106–4113.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research, 29(9), 2002–2007.

    Article  Google Scholar 

  • Potlakayala, S. D., Reed, D. W., Covello, P. S., & Fobert, P. R. (2007). Systemic acquired resistance in canola is linked with pathogenesis-related gene expression and requires salicylic Acid. Phytopathology, 97(7), 794–802.

    Article  PubMed  CAS  Google Scholar 

  • Pracros, P., Renaudin, J., Eveillard, S., Mouras, A., & Hernould, M. (2006). Tomato flower abnormalities induced by stolbur phytoplasma infection are associated with changes of expression of floral development genes. Molecular Plant-Microbe Interactions, 19(1), 62–68.

    Article  PubMed  CAS  Google Scholar 

  • Quaglino, F., Zhao, Y., Casati, P., Bulgari, D., Bianco, P. A., Wei, W., et al. (2013). ‘Candidatus phytoplasma solani’, a novel taxon associated with stolbur- and bois noir-related diseases of plants. International Journal of Systematic and Evolutionary Microbiology, 63, 2879–2894.

    Article  PubMed  CAS  Google Scholar 

  • Romanazzi, G., D’Ascenzo, D., & Murolo, S. (2009). Field treatment with resistance inducers for the control of grapevine Bois Noir. Journal of Plant Pathology, 91(3), 677–682.

    Google Scholar 

  • Santi, S., Grisan, S., Pierasco, A., De Marco, F., & Musetti, R. (2013). Laser microdissection of grapevine leaf phloem infected by stolbur reveals site-specific gene responses associated to sucrose transport and metabolism. Plant, Cell & Environment, 36(2), 343–355.

    Article  CAS  Google Scholar 

  • Sanz-Alférez, S., Mateos, B., Alvarado, R., & Sánchez, M. (2008). SAR induction in tomato plants is not effective against root-knot nematode infection. European Journal of Plant Pathology, 120(4), 417–425.

    Article  CAS  Google Scholar 

  • Scarponi, L., Buonaurio, R., & Martinetti, L. (2001). Persistence and translocation of a benzothiadiazole derivative in tomato plants in relation to systemic acquired resistance against Pseudomonas syringae pv tomato. Pest Management Science, 57(3), 262–268.

    Article  PubMed  CAS  Google Scholar 

  • Schweizer, P., Buchala, A., Silverman, P., Seskar, M., Raskin, I., & Metraux, J. P. (1997). Jasmonate-Inducible Genes Are Activated in Rice by Pathogen Attack without a Concomitant Increase in Endogenous Jasmonic Acid Levels. Plant Physiology, 114(1), 79–88.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Seemüller, E., & Harries, H. (2010). Plant resistance. In P. G. Weintraub & P. Jones (Eds.), Phytoplasmas: genomes, plant hosts and vectors (pp. 147–169). Wallingford: CABI.

    Google Scholar 

  • Seemüller, E., Marcone, C., Lauer, U., Ragozzino, A., & Göschl, M. (1998). Current status of molecular classification of the phytoplasmas. Journal of Plant Pathology, 80(1), 3–26.

    Google Scholar 

  • Spoel, S. H., Johnson, J. S., & Dong, X. (2007). Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18842–18847.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sugio, A., Kingdom, H. N., MacLean, A. M., Grieve, V. M., & Hogenhout, S. A. (2011a). Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 108(48), E1254–E1263.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sugio, A., MacLean, A. M., Kingdom, H. N., Grieve, V. M., Manimekalai, R., & Hogenhout, S. A. (2011b). Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annual Review of Phytopathology, 49, 175–195.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, S., Oshima, K., Kakizawa, S., Arashida, R., Jung, H.-Y., Yamaji, Y., et al. (2006). Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proceedings of the National Academy of Sciences of the United States of America, 103(11), 4252–4257.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Valenta, V., Musil, M., & Mišiga, S. (1961). Investigations on European Yellows‐type Viruses I. The Stolbur Virus. Journal of Phytopathology, 42(1), 1–38.

    Article  Google Scholar 

  • Vallad, G. E., & Goodman, R. M. (2004). Systemic Acquired Resistance and Induced Systemic Resistance in Conventional Agriculture. Crop Science, 44(6), 1920–1934.

    Article  Google Scholar 

  • Van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of Inducible Defense-related Proteins in Infected Plants. Annual Review of Phytopathology, 44(1), 135–162.

    Article  PubMed  CAS  Google Scholar 

  • Wasternack, C. (2007). Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany, 100(4), 681–697.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Weintraub, P. G., & Beanland, L. (2006). Insect vectors of phytoplasmas. Annual Review of Entomology, 51, 91–111.

    Article  PubMed  CAS  Google Scholar 

  • Wu, W., Ding, Y., Wei, W., Davis, R. E., Lee, I.-M., Hammond, R. W., et al. (2012). Salicylic acid-mediated elicitation of tomato defence against infection by potato purple top phytoplasma. Annals of Applied Biology, 161(1), 36–45.

    Article  CAS  Google Scholar 

  • Yamada, S., Kano, A., Tamaoki, D., Miyamoto, A., Shishido, H., Miyoshi, S., et al. (2012). Involvement of OsJAZ8 in Jasmonate-Induced Resistance to Bacterial Blight in Rice. Plant and Cell Physiology, 53(12), 2060–2072.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Jam Nazeer Ahmad was received a grant from Higher Education Commission of Pakistan (HEC) through SFERE in France. We thank Kaëlig Guionneaud and Denis Lacaze for growing and grafting plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Eveillard.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary table S1

primers used for transcriptional expression study of 14 genes involved in defense pathways in 3 mm flower buds and leaves of stolbur C and PO phytoplasma-infected tomatoes through real time RT-PCR (except PR4 by semi-quantitative RT-PCR). PAL: Phenylalanine ammonialyase, ICS: Isochorismate synthase, CHS2: Chalcone synthase 2, a-PRX: Acidic pathogenesis-related proteinX, b-PRX: Basic pathogenesis-related proteinX, PRX: Pathogenesis-related proteinX, LOXD: Lipoxygenase, PIN2: Proteinase inhibitor 2, PTI4: Transcription factor Pti4, TSR: stress-responsive factor TSRF1. (DOCX 25 kb)

Supplementary table S2

Transcriptional expression of 14 genes involved in defense pathways in 3 mm flower buds and leaves of stolbur PO and C phytoplasma-infected tomatoes through real time RT-PCR. PAL: Phenylalanine ammonialyase, ICS: Isochorismate synthase, CHS2: Chalcone synthase 2, a-PRX: Acidic pathogenesis-related proteinX, b-PRX: Basic pathogenesis-related proteinX, PRX: Pathogenesis-related proteinX, LoxD: Lipoxygenase, PIN2: Proteinase inhibitor 2, PTI4: Transcription factor Pti4, TSR: stress-responsive factor TSRF1. Values represent relative gene expression (RGE). RGE <1 means gene repression. (DOCX 21 kb)

Supplementary Fig. S1

Transcriptional expression analysis of acidic PR1 and proteinase inhibitor 2 (PIN2) 14 days or 21 days after infection in tomato. Plants were healthy (H) or stolbur infected (S), treated with ethanol (etOH) or methyl jasmonate (MeJA). Results are means of 3 replicates (*P < 0.05; **P < 0.005; ***P < 0.001) (DOCX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, J.N., Renaudin, J. & Eveillard, S. Expression of defence genes in stolbur phytoplasma infected tomatoes, and effect of defence stimulators on disease development. Eur J Plant Pathol 139, 39–51 (2014). https://doi.org/10.1007/s10658-013-0361-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0361-x

Keywords

Navigation