Skip to main content
Log in

Induction of resistance to Sclerotium rolfsii in different varieties of onion by inoculation with Trichoderma asperellum

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

We evaluated the ability of Trichoderma asperellum Samuels, Lieckfeldt & Nirenberg to induce resistance to the fungal plant pathogen, Sclerotium rolfsii Saccardo, in three onion (Allium cepa L.) varieties. Both the severity of disease and the activities of glucanase, chitinase and peroxidase (enzymes involved in plant resistance) were evaluated in onions inoculated with T. asperellum alone, S. rolfsii alone, or both T. asperellum and S. rolfsii (dual-inoculation) and compared to uninoculated (control) plants. In dual inoculations, the presence of T. asperellum reduced the severity of disease symptoms caused by S. rolfsii. Inoculation with T. asperellum alone increased glucanase, chitinase and peroxidase activity in bulbs, roots and leaves of all three onion varieties compared to uninoculated controls; bulbs of the variety Red Satan (RS) had the highest enzyme activity. In plants inoculated with S. rolfsii alone, enzyme activity was only increased in bulbs and roots compared to uninoculated controls. The highest levels of enzyme activity also occurred only in bulbs and roots of plants that had been dual-inoculated with T. asperellum and S. rolfsii. Plants of the RS variety showed the highest enzyme activities (both constitutive and induced) and showed the lowest severity of disease. Therefore, application of T. asperellum has potential as a biological control alternative to synthetic fungicides for protection of onion crops against infection by S. rolfsii. This protection depends on both constitutive and induced defence responses and varies amongst onion varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Adney, B., & Baker, J. (2008). Measurement of cellulase activities. Laboratory Analytical Procedure. NREL Report No. TP-510-42628.

  • Aycock, R. (1966). Stem rot and other diseases caused by Sclerotium rolfsii. NC Agricultural Experimentation Station Technical Bulletin, 174, 202.

    Google Scholar 

  • Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. (2004). Biocontrol mechanism of Trichoderma strains. International Microbiology, 7, 249–260.

    PubMed  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Christopher, D. J., Raj, T. S., Rani, S. U., & Udhayakumar, R. (2010). Role of defense enzymes activity in tomato as induced by Trichoderma virens against Fusarium wilt caused by Fusarium oxysporum f sp. Lycopersici. Journal of Biopesticides, 3, 158–162.

    Google Scholar 

  • El Ghaouth, A., Wilson, C. L., & Callahan, A. M. (2003). Induction of chitinase, β 1,3-glucanase, and phenylalanine ammonia lyase in peach fruit by UV-C treatment. Phytopathology, 93, 349–355.

    Article  PubMed  Google Scholar 

  • El-Katatny, M. H., Gudelj, M., Robra, K. H., Elnaghy, M. A., & Gübitz, G. M. (2001). Characterization of a chitinase and an endo-β-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Applied Microbiology and Biotechnology, 56, 137–143.

    Article  CAS  PubMed  Google Scholar 

  • Flores-Moctezuma, H. E., Montes-Belmont, R., Jiménez-Pérez, A., & Nava-Juárez, R. (2006). Pathogenic diversity of Sclerotium rolfsii isolates from Mexico, and potential control of southern blight through solarization and organic amendments. Crop Protection, 25, 108–118.

    Article  Google Scholar 

  • Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96, 190–194.

    Article  CAS  PubMed  Google Scholar 

  • Howell, C. R. (2006). Understanding the mechanisms employed by Trichoderma virens to effect biological control of cotton diseases. Phytopathology, 96, 178–180.

    Article  PubMed  Google Scholar 

  • Howell, C. R., Hanson, L. E., Stipanovic, R. D., & Puckhaber, L. S. (2000). Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology, 90, 248–252.

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan, V., Sankaralingam, A., & Nekkeeran, S. (2006). Biological control of groundnut stem rot caused by Sclerotium rolfsii (Sacc.). Archives of Phytopathology and Plant Protection, 39, 239–246.

    Article  Google Scholar 

  • Khan, J., Ooka, J. J., Miller, S. A., Madden, L. V., & Hoitink, H. A. J. (2004). Systemic resistance induced by Trichoderma hamatum in cucumber against phytophthora crown rot and leaf blight. Plant Disease, 88, 280–286.

    Article  Google Scholar 

  • Krause, M. S., De Seuster, T. J. J., Tiquia, S. M., Michel, F. C. J. R., Madden, L. V., & Hoitink, H. A. J. (2003). Isolation and characterization of rhizobacteria from composts that suppress the severity of bacterial leaf of radish. Phytopathology, 93, 1116–1123.

    Article  Google Scholar 

  • Montes-Belmont, B. R., Nava-Juárez, R. A., Flores-Moctezuma, H. E., & Mundo-Ocampo, M. (2003). Hongos y nematodos en raíces y bulbos de cebolla (Allium cepa L.) en el estado de Morelos, México. Revista Mexicana de Fitopatología, 21, 300–303.

    Google Scholar 

  • Nandini, D., Mohan, J. S. S., & Singh, G. (2010). Induction of systemic acquired resistance in Arachis hypogaea L. by Sclerotium rolfsii derived elicitors. Journal of Phytopathology, 158, 590–600.

    Google Scholar 

  • Passardi, F., Penel, C., & Dunand, C. (2004). Performing the paradoxical: how plant peroxidases modify the cell wall. Trends in Plant Science, 9, 534–540.

    Article  CAS  PubMed  Google Scholar 

  • Punja, Z. K. (1985). The biology, ecology, and control of Sclerotium rolfsii. Annual Review of Phytopathology, 23, 97–127.

    Article  CAS  Google Scholar 

  • SAGARPA. (2012). Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Ley de Desarrollo Rural Sustentable. Diario Oficial de la Federación.

  • Saksirirat, W., Chareerak, P., & Bunyatrachata, W. (2009). Induced systemic resistance of biocontrol fungus, Trichoderma spp. against bacterial and gray leaf spot in tomatoes. Asian Journal of Food and Agro-Industry, Special Issue S99–S104.

  • Salas-Marina, M. A., Silva-Flores, M. A., Uresti-Rivera, E. E., Castro-Longoria, E., Herrera-Estrella, A., & Casas-Flores, S. (2011). Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic, acid ethylene and salicylic acid pathways. European Journal of Plant Pathology, 131, 15–26.

    Article  CAS  Google Scholar 

  • Sarma, B. K., & Singh, U. P. (2003). Ferulic acid may prevent infection of Cicer arietinum by Sclerotium rolfsii. World Journal of Microbiology and Biotechnology, 19, 123–127.

    Article  CAS  Google Scholar 

  • Singh, A., Kumar, S. B., Sanmukh, U. R., & Bahadur, S. H. (2013). Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea trough enhanced antioxidant and phenylpropanoid activities. Microbiological Research, 168, 33–40.

    Article  CAS  PubMed  Google Scholar 

  • Stasolla, C., & Yeung, E. C. (2007). Cellular ascorbic acid regulates the activity of major peroxidases in the apical poles of germinating white spruce (Picea glauca). Plant Physiology and Biochemistry, 45, 188–198.

    Article  CAS  PubMed  Google Scholar 

  • Verma, M., Brar, S. K., Tyagi, R. D., Surampalli, R., & Valéro, J. R. (2007). Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochemichal Engineering Journal, 37, 1–20.

    Article  Google Scholar 

  • Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma-plant-pathogen interactions. Soil Biology & Biochemistry, 40, 1–10.

    Article  CAS  Google Scholar 

  • Yedidia, I., Benhamou, N., & Chet, I. (1999). Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Applied Environmental Microbiology, 65, 1061–1070.

    CAS  PubMed  Google Scholar 

  • Yedidia, I., Benhamou, N., Kapulnik, Y., & Chet, I. (2000). Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiology and Biochemistry, 38, 863–873.

    Article  CAS  Google Scholar 

  • Yedidia, I., Shoresh, M., Kerem, Z., Benhamou, N., Kapulnik, Y., & Chet, I. (2003). Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Applied Environmental Microbiology, 69, 7343–7353.

    Article  CAS  PubMed  Google Scholar 

  • Zappacosta, D., Delhey, R., & Curvetto, N. (2003). Growth and enzyme activity in roots and calli of resistant and susceptible Allium lines as influenced by sterile culture filtrates of Phoma terrestris. Biologia Plantarum, 46, 101–105.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financed by Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional (SIP-IPN, Grant 20121204). LBL, RMB and GSJ thank EDI and/or SIBE-IPN. PGV is indebted to CONACyT for the Master in Sciences fellowship awarded and PIFI-IPN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Sepúlveda-Jiménez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guzmán-Valle, P., Bravo-Luna, L., Montes-Belmont, R. et al. Induction of resistance to Sclerotium rolfsii in different varieties of onion by inoculation with Trichoderma asperellum . Eur J Plant Pathol 138, 223–229 (2014). https://doi.org/10.1007/s10658-013-0336-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0336-y

Keywords

Navigation