Skip to main content
Log in

Arsenic bioaccessibility in a gold mining area: a health risk assessment for children

  • Original paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

High concentrations of total arsenic (As) have been measured in soils of gold mining areas of Brazil. However, bioaccessibility tests have not yet been conducted on those materials, which is essential for better health risk estimates. This study aimed at evaluating As bioaccessibility in samples from a gold mining area located in Brazil and assessing children’s exposure to As-contaminated materials. Samples were collected from different materials (a control and four As-contaminated soils/sediments) found in a gold mine area located in Paracatu (MG), Brazil. Total and bioaccessible As concentrations were determined for all samples. The control soil presented the lowest As concentrations, while all other materials contained high total As concentrations (up to 2,666 mg kg−1) and low bioaccessible As percentage (<4.2%), indicating a low risk from exposure of resident children next to this area. The calculated dose of exposure indicated that, except for the pond tailings, in all other areas, the exposure route considering soil ingestion contributed at most to 9.7% of the maximum As allowed ingestion per day (0.3 μg kg−1 BW day−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (ATSDR). (2007). Cercla priority list of hazardous substances, 2007. Accessed June 25, 2010 from http://atsdr.cdc.gov/cercla/07list.html.

  • Agency for Toxic Substances and Disease Registry (ATSDR). (2009). Minimal Risk Levels (MRLs). Accessed September 25, 2010 from http://www.atsdr.cdc.gov/mrls/mrls_list.html.

  • Andrade, R. P., Santana-Filho, S., Mello, J. W. V., Figueiredo, B. R., & Dussin, T. M. (2008). Arsenic mobilization from sulfidic materials from gold mines in Minas Gerais state. Química Nova, 31(5), 1127–1130.

    Article  Google Scholar 

  • Borba, R. P., Figueiredo, B. R., & Matschullat, J. (2003). Geochemical distribution of arsenic in waters, sediments and weathered gold mineralized rocks from iron quadrangle, Brazil. Environmental Geology, 44(1), 39–52.

    CAS  Google Scholar 

  • Borba, R. P., Figueiredo, B. R., Rawlins, B., & Matschullat, J. (2000). Arsenic in water and sediment in the iron quadrangle, state of Minas Gerais, Brazil. Revista Brasileira de Geociência, 30(3), 558–561.

    CAS  Google Scholar 

  • Bossy, A., Grosbois, C., Beauchemin, S., Courtin-Nomade, A., Hendershot, W., & Bril, H. (2010). Alteration of As-bearing phases in a small watershed located on a high grade arsenic-geochemical anomaly (French Massif Central). Applied Geochemistry, 25(12), 1889–1901.

    Article  CAS  Google Scholar 

  • Canadian Council of Ministers of the Environment (CCME). (1997). Canadian soil quality guidelines for the protection of environmental and human health: arsenic (inorganic) fact sheet. CCME (pp. 1–7).

  • Chung, E., Lee, J. S., Chon, H. T., & Sager, M. (2005). Environmental contamination and bioaccessibility of arsenic and metals around the Dongjeong Au-Ag-Cu mine, Korea. Geochemistry: Exploration, Environment, Analysis, 5(1), 69–74.

    Article  CAS  Google Scholar 

  • Conama, Resolução No420/2009. (2009). Valores orientadores de qualidade do solo quanto à presença de substâncias químicas, Conselho Nacional de Meio Ambiente, 2009. Accessed September 2, 2011 from http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620.

  • De Miguel, E., Iribarren, I., Chacon, E., Ordonez, A., & Charlesworth, S. (2007). Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere, 66, 505–513.

    Article  Google Scholar 

  • Department for Environment, Food and Rural Affairs and the Environment Agency (DEFRA and EA). (2002). Soil guideline values for arsenic contamination. Bristol: Environment Agency.

  • Deschamps, E., Ciminelli, V. S. T., Lange, F. T., Matschullat, J., Raue, B., & Schmidt, H. (2002). Soil and sediment geochemistry of the iron quadrangle, Brazil. Journal of Soils and Sediments, 2(4), 216–222.

    Article  CAS  Google Scholar 

  • Dube, E. M., Petito Boyce, C., Beck, B. D., Lewandowski, T., & Schettler, S. (2004). Assessment of potential human health risks from arsenic in CCA-treated wood. Human and Ecological Risk Assessment, 10(6), 1019–1067.

    Article  CAS  Google Scholar 

  • Girouard, E., & Zagury, G. J. (2009). Arsenic bioaccessibility in CCA-contaminated soils: Influence of soil properties, arsenic fractionation and particle-size fraction. Science of the Total Environment, 407(8), 2576–2585.

    Article  CAS  Google Scholar 

  • Guilherme, L. R. G., & Marchi, G. (2007). Metais em Fertilizantes Inorgânicos: avaliação de risco à saúde após a aplicação. São Paulo: Associação Nacional para Difusão de Adubos.

    Google Scholar 

  • Hemond, H. F., & Solo-Gabriele, H. M. (2004). Children’s exposure to arsenic from CCA-treated wooden decks and playground structures. Risk Analysis, 24(1), 51–64.

    Article  Google Scholar 

  • Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuhcel, T., et al. (2007). In vitro assessment of arsenic bioaccessibility in contaminated (anthropogenic and geogenic) soils. Chemosphere, 69(1), 69–78.

    Article  CAS  Google Scholar 

  • Koch, I., Duso, A., Haug, C., Miskelly, C., Sommerville, M., Smith, P., et al. (2005). Distinguishing between naturally and anthropogenically elevated arsenic at an abandoned Artic military site. Environmental Forensics, 6(4), 335–344.

    Article  CAS  Google Scholar 

  • Koch, I., Sylvester, S., Lai, V. W. M., Owen, A., Reimer, K. J., & Cullen, W. R. (2007). Bioaccessibility and excretion of arsenic in Niu Huang Jie Du Pian pills. Toxicology and Applied Pharmacology, 222(3), 357–364.

    Article  CAS  Google Scholar 

  • Kwon, E., Zhang, H. Q., Wang, Z. W., Jhangri, G. S., Lu, X. F., Fok, N., et al. (2004). Arsenic on the hands of children after playing in playgrounds. Environmental Health Perspectives, 112(14), 1375–1380.

    Article  CAS  Google Scholar 

  • Ljung, K., Selinus, O., Otabbong, E., & Berglund, M. (2006). Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children. Applied Geochemistry, 21, 1613–1624.

    Article  CAS  Google Scholar 

  • Lu, Y., Yin, W., Zhang, G., Huang, L., & Zhao, Y. (2011). Assessment of bioaccessibility and exposure risk of arsenic and lead in urban soils of Guangzhou City, China. Environmental Geochemistry and Health, 33(2), 93–102.

    Article  CAS  Google Scholar 

  • Matschullat, J., Borba, R. P., Deschamps, E., Figueiredo, B. R., Gabrio, T., & Schwenk, M. (2000). Human and environmental contamination in the iron quadrangle, Brazil. Applied Geochemistry, 15, 181–190.

    Article  CAS  Google Scholar 

  • Meunier, L., Walker, S. R., Wragg, J., Parsons, M. B., Koch, I., Jamieson, H. E., et al. (2010). Effects of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia. Environmental Science and Technology, 44(7), 2667–2674.

    Article  CAS  Google Scholar 

  • Nathanail, C. P., McCaffrey, C., & Haynes, D. (2005). Assessing exposure to pedogenic arsenic contamination at a dwelling in Northamptonshire, UK: A case study. Soil Use and Management, 21, 508–517.

    Article  Google Scholar 

  • Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, S. C., Schoeters, G., et al. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science and Technology, 36(15), 3326–3334.

    Article  CAS  Google Scholar 

  • Palumbo-Roe, B., Cave, M. R., Klinck, B. A., Wragg, J., Taylor, H., O’Donnell, K. E., et al. (2005). Bioaccessibility of arsenic in soils developed over Jurassic ironstones in eastern England. Environmental Geochemistry and Health, 27(2), 121–130.

    Article  CAS  Google Scholar 

  • Palumbo-Roe, B., Klinck, B., & Cave, M. (2007). Arsenic speciation and mobility in mine wastes from a copper–arsenic mine in Devon, UK: An SEM, XAS, sequential chemical extraction study. Trace Metals and other Contaminants in the Environment, 9(6), 431–460.

    Google Scholar 

  • Paustenbach, D. J. (2000). The practice of exposure assessment: A state-of-the-art review. Journal of Toxicology and Environmental Health Part B, 3(3), 179–291.

    Article  CAS  Google Scholar 

  • Pouschat, P., & Zagury, G. J. (2006). In vitro gastrointestinal bioavailability of arsenic in soils collected near CCA—treated utility poles. Environmental Science and Technology, 40(13), 4317–4323.

    Article  CAS  Google Scholar 

  • Rieuwerts, J. S., Searle, P., & Buck, R. (2006). Bioaccessible arsenic in the home environment in southwest England. Science of the Total Environment, 371, 89–98.

    Article  CAS  Google Scholar 

  • Rodriguez, R. R., Basta, N. T., Casteel, S. W., & Pace, L. W. (1999). An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environmental Science and Technology, 33(4), 642–649.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Science of the Total Environment, 30(2), 422–430.

    CAS  Google Scholar 

  • Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., et al. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33(21), 3697–3705.

    Article  CAS  Google Scholar 

  • Sarkar, D., Makris, K. C., Parra-Noonan, M. T., & Datta, R. (2007). Effect of soil properties on arsenic fractionation and bioaccessibility in cattle and sheep dipping vat sites. Environment International, 33(2), 164–169.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency. (1998). Test methods for evaluation solid waste physical and chemical methods: Microwave assisted acid digest of sediments, sludges, soils and oils, SW-846. Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • U.S. EPA (1998b) Integrated risk information system: Arsenic, inorganic; CASRN 7440-38-2; Environmental Protection Agency; U.S. Government Printing Office: Washington, DC.

  • U.S. Environmental Protection Agency. Child-specific exposure factors handbook. (2002). EPA/600/P-00/002B; Office of Research and Development; U.S. Government Printing Office: Washington, DC; Accessed June 25, 2010 from http://www.epa.gov/ncea.

Download references

Acknowledgments

The authors acknowledge The National Council for Scientific and Technological Development (CNPq Grant 577513/2008-7); The Research Foundation of the State of Minas Gerais (FAPEMIG Grants CAG PPM 187-09 & CAG APQ 118-09); and The Kinross Canada-Brazil Network for Advanced Education and Research in Land Resource Management for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Benedito Ono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ono, F.B., Guilherme, L.R.G., Penido, E.S. et al. Arsenic bioaccessibility in a gold mining area: a health risk assessment for children. Environ Geochem Health 34, 457–465 (2012). https://doi.org/10.1007/s10653-011-9444-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-011-9444-9

Keywords

Navigation