Skip to main content
Log in

Vertical movement of dolphinfish Coryphaena hippurus as recorded by acceleration data-loggers in the northern East China Sea

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Environmental changes influence foraging behavior for most animals. Dolphinfish, Coryphaena hippurus, are epipelagic predators and have a cosmopolitan tropical to warm-temperate (>20°C) distribution. We simultaneously obtained the ambient temperature and the foraging behavior (i.e., swimming speed, depth and tailbeat acceleration) of dolphinfish, using an acceleration data-logger in May, September, October, November 2007, June 2008, May and July 2010 for 8 individuals. Although the dolphinfish spent a mean ± standard deviation of 43.4 ± 27.7% of their time at the surface (0–5 m), dive excursions from the surface (DES) were observed in all individuals and maximum DES depths ranged from 50.1 to 95.4 m. DES events resulted dives below the thermocline for these dolphinfish, and there was a significantly positive relationship between the isothermal layer depth (ILD) and DES depth. Our results demonstrate that dolphinfish avoided the rapid thermal change beyond the thermocline, and their prey is most likely found in the upper layers of the thermocline. Gliding behavior during the DES phase was also observed and dolphinfish gradually descended to deeper waters with gliding. The gliding time was longer when the ILD was deeper, and fish tended to dive deeper. We suggest that dolphinfish adopt gliding behavior to search a broader range of depths for prey, while minimizing energy use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Blank JM, Morrissette JM, Farwell CJ, Price M, Schallert RJ, Block BA (2007) Temperature effects on metabolic rate of juvenile Pacific bluefin tuna Thunnus orientalis. J Exp Biol 210:4254–4261. doi:10.1242/jeb.005835

    Article  PubMed  Google Scholar 

  • Charef A, Ohshimo S, Aoki I, Al Absi N (2010) Classification of fish schools based on evaluation of acoustic descriptor characteristics. Fish Sci 76:1–11. doi:10.1007/s12562-009-0186-x

    Article  CAS  Google Scholar 

  • Charnov EL (1976) Optimal foraging, the marginal value theorem. Theor Popul Biol 9:129–136

    Article  PubMed  CAS  Google Scholar 

  • Crocker DE, Costa DP, Le Boeuf BJ, Webb PM, Houser DS (2006) Impact of El Niño on the foraging behavior of female northern elephant seals. Mar Ecol Prog Ser 309:1–10

    Article  Google Scholar 

  • Gray CA (2003) Variability in thermocline depth and strength, and relationships with vertical distributions of fish larvae and mesozooplankton in dynamic coastalwaters. Mar Ecol Prog Ser 247:211–244

    Article  Google Scholar 

  • Holland KN, Brill RW, Chang RKC (1990) Horizontal and vertical movements of yellowfin and bigeye tuna associated with fish aggregating devices. Fish Bull US 88:439–507

    Google Scholar 

  • Kara AB, Rochford PA, Hurlburt HE (2000) An optimal definition for ocean mixed layer depth. J Geophys Res 105:16803–16821. doi:10.1029/2000JC900072

    Article  Google Scholar 

  • Kawabe R, Nashimoto K, Hiraishi T, Naito Y, Sato K (2003) A new device for monitoring the activity of freely swimming flatfish, Japanese flounder, Paralichthys olivaceus. Fish Sci 69:3–10. doi:10.1046/j.1444-2906.2003.00581.x

    Article  CAS  Google Scholar 

  • Kawabe R, Naito Y, Sato K, Miyashita K, Yamashita N (2004) Direct measurement of the swimming speed, tailbeat, and body angle of Japanese flounder (Paralichthys olivaceus). ICES J Mar Sci 61:1080–1087. doi:10.1016/j.icesjms.2004.07.014

    Article  Google Scholar 

  • Kitagawa T, Nakata H, Kimura S, Tsuji S (2001) Thermoconservation mechanism inferred from peritoneal cavity temperature recorded in free swimming Pacific bluefin tuna (Thunnus thynnus orientalis). Mar Ecol Prog Ser 220:253–263. doi:10.3354/meps220253

    Article  Google Scholar 

  • Kitagawa T, Kimura S, Nakata H, Yamada H (2004) Diving behavior of immature, feeding Pacific bluefin tuna (Thunnus thynnus orientalis) in relation to season and area: the East China Sea and the Kuroshio-Oyashio transition region. Fish Oceanogr 13:161–180. doi:10.1111/j.1365-2419.2004.00282.x

    Article  Google Scholar 

  • Kojima S (1966) Fishery biology of the common Dolphin, Coryphaena hippurus L., inhabiting the Pacific Ocean. Bull Shimane Prefectural Fish Exp Stn 1:1–108, (in Japanese)

    Google Scholar 

  • Lawson GL, Castleton MR, Block BA (2010) Movements and diving behavior of Atlantic bluefin tuna Thunnus thynnus in relation to water column structure in the northwestern Atlantic. Mar Ecol Prog Ser 400:245–265. doi:10.3354/meps08394

    Article  Google Scholar 

  • Lowe CG, Goldman KJ (2001) Thermal and bioenergetics of elasmobranchs: bridging the gap. Environ Biol Fish 60:251–266. doi:10.1023/A:1007650502269

    Article  Google Scholar 

  • Lowe CG, Holland KN, Wolcott TG (1998) A new acoustic tailbeat transmitter for fishes. Fish Res 36:275–283. doi:10.1016/S0165-7836(98)00109-X

    Article  Google Scholar 

  • Ohshimo S (2004) Spatial distribution and biomass of pelagic fish in the East China Sea in summer, based on acoustic surveys from 1997 to 2001. Fish Sci 70:389–400. doi:10.1111/j.1444-2906.2004.00818.x

    Article  CAS  Google Scholar 

  • Ohshimo S (2005) Stock assessment and evaluation for Japanese anchovy in the Tsushima warm current Japan (fiscal year 2004). In: Marine Fisheries Stock Assessment and Evaluation for Japanese Waters (FiscalYear 2004/2005), Fisheries Agency and Fisheries Research Agency of Japan, Tokyo. 2004:657–674 (in Japanese)

  • Ohshimo S (2007) Stock assessment and evaluation for Japanese anchovy in the Tsushima warm current Japan (fiscal year 2006). In: Marine Fisheries Stock Assessment and Evaluation for Japanese Waters (FiscalYear 2006/2007), Fisheries Agency and Fisheries Research Agency of Japan, Tokyo. 2007:678–696 (in Japanese)

  • Palko BJ, Beardsley GL, Richards WJ (1982) Synopsis of the biological data on Dolphin-fishes, Coryphaena hippurus Linnaeus and Coryphaena equiselis Linnaeus. FAO Fish Synop 130:1–28

    Google Scholar 

  • R Development Core Team (2010) R: A language and environment for statistical computing, reference index version 2.11.1. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org

  • Ropert-Coudert Y, Wilson RP (2005) Trends and perspectives in animal-attached remote sensing. Frontiers Ecol Environ 3:437–444. doi:10.1890/1540-9295(2005)003[0437:TAPIAR]2.0.CO;2

    Article  Google Scholar 

  • Sato K, Watanuki Y, Takahashi A, Miller PJO, Tanaka H, Kawabe R, Ponganis PJ, Handrich Y, Akamatsu T, Watanabe Y, Mitani Y, Costa DP, Charles-André B, Aoki K, Amano M, Trathan P, Shapiro A, Naito Y (2007) Stroke frequency, but not swimming speed, is related to body size in free-ranging seabirds, pinnipeds and cetaceans. Proc R Soc Lond B 274:471–477. doi:10.1098/rspb.2006.0005

    Article  Google Scholar 

  • Schaefer KM, Fuller DW, Block BA (2007) Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacores) in the northeastern Pacific Ocean, ascertained through archival tag data. Mar Biol 152:503–525. doi:10.1007/s00227-007-0689-x

    Article  Google Scholar 

  • Sith A, Christensen B (2001) Optimal diet theory: when does it work and when and why does it fail? Anim Behav 61:379–390. doi:10.1006/anbe.2000.1592

    Article  Google Scholar 

  • Sundström LF, Gruber SH (1998) Using speed sensing transmitters to model the bioenergetics of subadult lemon sharks, Negaprion brevirostris (Poey), in the field. Hydrobiologia 371/372:241–247. doi:10.1023/A:1017031406947

    Article  Google Scholar 

  • Tanaka H, Takagi Y, Naito Y (2001) Swimming speeds and buoyancy compensation of migrating adult chum salmon Oncorhynchus keta revealed by speed/depth/acceleration data logger. J Exp Biol 204:3895–3904

    PubMed  CAS  Google Scholar 

  • Tsuda Y, Kawabe R, Tanaka H, Mitsunaga Y, Hiraishi T, Yamamoto K, Nashimoto K (2006) Monitoring the spawning behaviour of chum salmon with an acceleration data logger. Ecol Freshw Fish 15:264–274. doi:10.1111/j.1600-0633.2006.00147.x

    Article  Google Scholar 

  • Venables WN, Dichmont CM (2004) GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research. Fish Res 70:319–337. doi:10.1016/j.fishres.2004.08.011

    Article  Google Scholar 

  • Walli A, Teo SLH, Boustany A, Farwell CJ, Williams T, Dewar H, Prince E, Block BA (2009) Seasonal movements, aggregations and diving behavior of atlantic bluefin tuna (Thunnus thynnus) revealed with archival tags. PLoS ONE 4(7):e6151. doi:10.1371/journal.pone.0006151

    Article  PubMed  Google Scholar 

  • Watanabe Y, Baranov EA, Sato K, Naito Y, Miyazaki N (2004) Foraging tactics of Baikal seals differ between day and night. Mar Ecol Prog Ser 279:283–289. doi:10.3354/meps279283

    Article  Google Scholar 

  • Weihs D (1973) Mechanically efficient swimming techniques for fish with negative buoyancy. J Mar Res 31:194–209

    Google Scholar 

  • Webb PW, Keyes RS (1981) Division of labour between median fins in swimming dolphin (Pisces: Coryphaeidae). Copeia 1981:901–904

    Article  Google Scholar 

  • Williams TM, Fuiman LA, Horning M, Davis RW (2004) The cost of foraging by a marine predator, the Weddell seal Leptonychotes weddellii: pricing by the stroke. J Exp Biol 207:973–982. doi:10.1242/jeb.00822

    Article  PubMed  Google Scholar 

  • Wilson SG, Lutcavage ME, Brill RW, Genovese MP, Cooper AB, Everly AW (2005) Movements of bluefin tuna (Thunnus thynnus) in the northwestern Atlantic Ocean recorded by pop-up satellite archival tags. Mar Biol 146:409–423. doi:10.1007/s00227-004-1445-0

    Article  Google Scholar 

  • Wilson RP, White CR, Quintana F, Halsey LG, Liebsch N, Martin GR, Butler PJ (2006) Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant. J Anim Ecol 75:1081–1090. doi:10.1111/j.1365-2656.2006.01127.x

    Article  PubMed  Google Scholar 

  • Yoda K, Naito Y, Sato K, Takahashi A, Nishikawa J, Ropert-Coudert Y, Kurita M, Le Maho Y (2001) A new technique for monitoring the behaviour of free-ranging Adélie penguins. J Exp Biol 204:685–690

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Kusaba, D. Tawara, Y. Mori and other members of Takahama Fisherman’s Association, H. Tsubakiyama of Wakamatsu fisherman’s Association and the Crew of T/S Kakuyo-maru for our field survey, T. Takagi, K. Komeyama, T. Yasuda and Y. Tamura for help with the calibration experiment of data-loggers, and H. Kimura, S. Tomoe, N. Nakatsuka, H. Murata and Y. Kotera for their field assistance. This study was supported by the Japan Society of the Promotion of Science (No. 19380114) to R.K., the MEXT Special Education Research Collaborative Project Japan, the president’s discretionary fund of Nagasaki University to R.K. and Fisheries Research Agency. Finally we would like to show our appreciation to the anonymous reviewers that provided comments, which greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seishiro Furukawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furukawa, S., Kawabe, R., Ohshimo, S. et al. Vertical movement of dolphinfish Coryphaena hippurus as recorded by acceleration data-loggers in the northern East China Sea. Environ Biol Fish 92, 89–99 (2011). https://doi.org/10.1007/s10641-011-9818-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-011-9818-y

Keywords

Navigation