Skip to main content
Log in

Enumeration of linear transformation shift registers

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We consider the problem of counting the number of linear transformation shift registers (TSRs) of a given order over a finite field. We derive explicit formulae for the number of irreducible TSRs of order two. An interesting connection between TSRs and self-reciprocal polynomials is outlined. We use this connection and our results on TSRs to deduce a theorem of Carlitz on the number of self-reciprocal irreducible monic polynomials of a given degree over a finite field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. By ‘order’ of a TSR, we mean the order of the recurrence relation defining the TSR, not the multiplicative order of the corresponding state transition matrix (if and when it lies in \(\mathrm{GL }_{mn}({\mathbb F}_q)\)). We follow this convention throughout.

References

  1. Ahmadi O.: Generalization of a theorem of Carlitz. Finite Fields Appl. 17(5), 473–480 (2011).

    Google Scholar 

  2. Carlitz L.: Some theorems on irreducible reciprocal polynomials over a finite field. J. Reine Angew. Math. 227, 212–220 (1967).

    Google Scholar 

  3. Chen E., Tseng D.: The splitting subspace conjecture. Finite Fields Appl. 24, 15–28 (2013).

    Google Scholar 

  4. Cohen S.D.: On irreducible polynomials of certain types in finite fields. Proc. Camb. Philos. Soc. 66, 335–344 (1969).

  5. Dewar M., Panario D.: Linear transformation shift registers. IEEE Trans. Inf. Theory 49(8), 2047–2052 (2003).

    Google Scholar 

  6. Dewar M., Panario D.: Mutual irreducibility of certain polynomials. In: Mullen, G.L., Poli, A., Stichtenoth, H. (eds.) Finite Fields and Applications, Volume 2948 of Lecture Notes in Computer Science, pp. 59–68. Springer, Berlin (2004).

  7. Gerstenhaber M.: On the number of nilpotent matrices with coefficients in a finite field. Ill. J. Math. 5, 330–333 (1961).

    Google Scholar 

  8. Ghorpade S.R., Hasan S.U., Kumari M.: Primitive polynomials, singer cycles and word-oriented linear feedback shift registers. Des. Codes Cryptogr. 58(2), 123–134 (2011).

    Google Scholar 

  9. Ghorpade S.R., Ram S.: Block companion Singer cycles, primitive recursive vector sequences, and coprime polynomial pairs over finite fields. Finite Fields Appl. 17(5), 461–472 (2011).

    Google Scholar 

  10. Ghorpade S.R., Ram S.: Enumeration of splitting subspaces over finite fields. In: Aubry, Y., Ritzenthaler, C., Zykin, A. (eds.) Arithmetic, Geometry, Cryptography and Coding Theory, Volume 574 of Contemporary Mathematics, pp. 49–58. American Mathematical Society, Providence (2012).

  11. Hasan S.U., Panario D., Wang Q.: Word-Oriented Transformation Shift Registers and Their Linear Complexity. SETA, Volume 7280 of Lecture Notes in Computer Science, pp. 190–201. Springer, Berlin (2012).

  12. Lidl R. Niederreiter H.: Finite Fields, Volume 20 of Encyclopedia of Mathematics and its Applications, 2nd edn. Cambridge University Press, Cambridge (1997).

  13. Meyn H.: On the construction of irreducible self-reciprocal polynomials over finite fields. Appl. Algebra Eng. Commun. Comput. 1(1), 43–53 (1990).

  14. Meyn H., Götz W.: Self-reciprocal polynomials over finite fields. Publ. I.R.M.A. Strasbourg 413(S-21), 82–90 (1990).

  15. Miller R.L.: Necklaces, symmetries and self-reciprocal polynomials. Discret. Math. 22(1), 25–33 (1978).

    Google Scholar 

  16. Niederreiter H.: The multiple-recursive matrix method for pseudorandom number generation. Finite Fields Appl. 1(1), 3–30 (1995).

    Google Scholar 

  17. Preneel B. (ed.): Introduction to the Proceedings of the Second Workshop on Fast Software Encryption (Leuven, Belgium, Dec 1994), Volume 1008 of Lecture Notes in Computer Science. Springer, Heidelberg (1995).

  18. Reiner I.: On the number of matrices with given characteristic polynomial. Ill. J. Math. 5, 324–329 (1961).

    Google Scholar 

  19. Tsaban B., Vishne U.: Efficient linear feedback shift registers with maximal period. Finite Fields Appl. 8(2), 256–267 (2002).

    Google Scholar 

  20. Zeng G., Han W., He K.: High efficiency feedback shift register: \(\sigma \)-lfsr. Cryptology ePrint Archive, Report 2007/114. http://eprint.iacr.org/2007/114 (2007). Accessed 2 Dec 2013

Download references

Acknowledgments

The author would like to thank Prof. Sudhir Ghorpade for suggesting the problem, and Sartaj Ul Hasan and Prof. Gilles Lachaud for their comments on a preliminary draft of this paper. This research was partly carried out at the Indian Statistical Institute, Bangalore and partly at the Institut de Mathématiques de Luminy, Marseille.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samrith Ram.

Additional information

Communicated by D. Panario.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ram, S. Enumeration of linear transformation shift registers. Des. Codes Cryptogr. 75, 301–314 (2015). https://doi.org/10.1007/s10623-013-9913-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-013-9913-5

Keywords

Mathematics Subject Classification

Navigation