1.

Aharoni, R., & Linial, N. (1986). Minimal non-two-colorable hypergraphs and minimal unsatisfiable formulas.

*Journal of Combinatorial Theory Series A, 43*(2), 196–204.

MATHCrossRefMathSciNet2.

Andraus, Z. S., Liffiton, M. H., & Sakallah, K. A. (2006). Refinement strategies for verification methods based on datapath abstraction. In *Proceedings of the 2006 conference on Asia South Pacific design automation (ASP-DAC’06)* (pp. 19–24).

3.

Andraus, Z. S., Liffiton, M. H., & Sakallah, K. A. (2007). CEGAR-based formal hardware verification: A case study. Technical Report CSE-TR-531-07, University of Michigan.

4.

Bailey, J., & Stuckey, P. J. (2005). Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization. In *Proceedings of the 7th international symposium on practical aspects of declarative languages (PADL’05)*, *LNCS* (Vol. 3350, pp. 174–186).

5.

Birnbaum, E., & Lozinskii, E. L. (2003). Consistent subsets of inconsistent systems: Structure and behaviour.

*Journal of Experimental and Theoretical Artificial Intelligence, 15*, 25–46.

MATHCrossRef6.

Bruni, R., & Sassano, A. (2001). Restoring satisfiability or maintaining unsatisfiability by finding small unsatisfiable subformulae. In *LICS 2001 workshop on theory and applications of satisfiability testing (SAT-2001)*, *Electronic Notes in Discrete Mathematics* (Vol. 9, pp. 162–173).

7.

Büning, H. K. (2000). On subclasses of minimal unsatisfiable formulas.

*Discrete Applied Mathematics, 107*(1–3), 83–98.

MATHCrossRefMathSciNet8.

Büning, H. K., & Zhao, X. (2001). Minimal falsity for QBF with deficiency one. Workshop on Theory and Applications of Quantified Boolean Formulas.

9.

Dasgupta, S., & Chandru, V. (2004). Minimal unsatisfiable sets: Classification and bounds. In M. J. Maher (Ed.), *Advances in computer science—ASIAN 2004*, *LNCS* (Vol. 3321, pp. 330–342). Springer.

10.

Davydov, G., Davydova, I., & Büning, H. K. (1998). An efficient algorithm for the minimal unsatisfiability problem for a subclass of CNF.

*Annals of Mathematics and Artificial Intelligence, 23*(3–4), 229–245.

MATHCrossRefMathSciNet11.

Eén, N., & Sörensson, N. (2003). An extensible SAT-solver. In *Proceedings of the 6th international conference on theory and applications of satisfiability testing (SAT-2003)*, *LNCS* (Vol. 2919, pp. 502–518).

12.

Fleischner, H., Kullmann, O., & Szeider, S. (2002). Polynomial-time recognition of minimal unsatisfiable formulas with fixed clause-variable difference.

*Theoretical Computer Science, 289*(1), 503–516.

MATHCrossRefMathSciNet13.

Gershman, R., Koifman, M., & Strichman, O. (2006). Deriving small unsatisfiable cores with dominators. In *Proceedings of the 18th international conference on computer aided verification (CAV’06)* (pp. 109–122).

14.

Goldberg, E., & Novikov, Y. (2003). Verification of proofs of unsatisfiability for CNF formulas. In *Proceedings of the conference on design, automation, and test in Europe (DATE’03)* (pp. 10886–10891).

15.

Grégoire, É., Mazure, B., & Piette, C. (2007). Local-search extraction of MUSes.

*Constraints, 12*(3), 325–344.

MATHCrossRefMathSciNet16.

Hachtel, G. D., & Somenzi, F. (1996). *Logic synthesis and verification algorithms*. Kluwer Academic.

17.

Han, B., & Lee, S.-J. (1999). Deriving minimal conflict sets by CS-trees with mark set in diagnosis from first principles. *IEEE Transactions on Systems, Man, and Cybernetics, Part B, 29*(2), 281–286, April.

18.

Huang, J. (2005). MUP: A minimal unsatisfiability prover. In *Proceedings of the 10th Asia and South Pacific design automation conference (ASP-DAC’05)* (pp. 432–437).

19.

Jain, H., Kroening, D., Sharygina, N., & Clarke, E. (2005). Word level predicate abstraction and refinement for verifying RTL verilog. In *Proceedings of the 42nd annual conference on design automation (DAC’05)* (pp. 445–450).

20.

Kullmann, O. (2000). An application of matroid theory to the SAT problem. In *15th annual IEEE conference on computational complexity* (pp. 116–124), July.

21.

Kurshan, R. P. (1994). *Computer aided verification of coordinating processes*. Princeton University Press, Princeton, NJ.

22.

Liffiton, M. H., & Sakallah, K. A. (2005). On finding all minimally unsatisfiable subformulas. In *Proceedings of the 8th international conference on theory and applications of satisfiability testing (SAT-2005)*, *LNCS* (Vol. 3569, pp. 173–186).

23.

Liffiton, M. H., & Sakallah, K. A. (2008). Algorithms for computing minimal unsatisfiable subsets of constraints.

*Journal of Automated Reasoning, 40*(1), 1–33, January.

MATHCrossRefMathSciNet24.

Lynce, I., & Marques-Silva, J. (2004). On computing minimum unsatisfiable cores. In *The 7th international conference on theory and applications of satisfiability testing (SAT-2004)*.

25.

Mneimneh, M. N., Lynce, I., Andraus, Z. S., Silva, J. P. M., & Sakallah, K. A. (2005). A branch-and-bound algorithm for extracting smallest minimal unsatisfiable formulas. In *Proceedings of the 8th international conference on theory and applications of satisfiability testing (SAT-2005)*, *LNCS* (Vol. 3569, pp. 467–474).

26.

Nam, G.-J., Aloul, F. A., Sakallah, K. A., & Rutenbar, R. A. (2004). A comparative study of two Boolean formulations of FPGA detailed routing constraints.

*IEEE Transactions on Computers, 53*(6), 688–696.

CrossRef27.

Oh, Y., Mneimneh, M. N., Andraus, Z. S., Sakallah, K. A., & Markov, I. L. (2004). AMUSE: A minimally-unsatisfiable subformula extractor. In *Proceedings of the 41st annual conference on design automation (DAC’04)* (pp. 518–523).

28.

Papadimitriou, C. H., & Wolfe, D. (1988). The complexity of facets resolved.

*Journal of Computer and System Sciences, 37*(1), 2–13.

MATHCrossRefMathSciNet29.

Sinz, C. (2003). SAT benchmarks from automotive product configuration. Website.

http://www-sr.informatik.uni-tuebingen.de/∼sinz/DC/.

30.

Sinz, C., Kaiser, A., & Küchlin, W. (2003). Formal methods for the validation of automotive product configuration data.

*Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 17*(1), 75–97.

CrossRef31.

Szeider, S. (2004). Minimal unsatisfiable formulas with bounded clause-variable difference are fixed-parameter tractable.

*Journal of Computer and System Sciences, 69*(4), 656–674, December.

MATHCrossRefMathSciNet32.

Zhang, J., Li, S., & Shen, S. (2006). Extracting minimum unsatisfiable cores with a greedy genetic algorithm. In *AI 2006: Advances in artificial intelligence*, *LNCS* (Vol. 4304, pp. 847–856).

33.

Zhang, L., & Malik, S. (2003). Extracting small unsatisfiable cores from unsatisfiable Boolean formula. In *The 6th international conference on theory and applications of satisfiability testing (SAT-2003)*.

34.

Zhang, L., & Malik, S. (2003). Validating SAT solvers using an independent resolution-based checker: Practical implementations and other applications. In *Proceedings of the conference on design, automation, and test in Europe (DATE’03)* (pp. 10880–10885).