Skip to main content

Advertisement

Log in

Impact of quarrying on genetic diversity: an approach across landscapes and over time

  • Original Research
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Land conversion is one of the major global changes that threaten population viability. As with many industrial activities, quarrying highly modifies land cover, destroying previous habitats but also creating new conditions potentially supporting functioning and connectivity of pioneer species. Using a multi-landscape and -temporal approach, we assessed the impact of quarrying on the genetic diversity of two amphibians with contrasted ecological constraints: the common toad (Bufo bufo) and the natterjack toad (Bufo calamita), favouring vegetated and pioneer environments, respectively. The study was conducted across six areas of ca. 250 km2 each. Mixed effect models were used to determine which landscape features affect the genetic diversity of the two species. These analyses were performed at three time points (1940s, 1970s and 2000s). Genetic diversity of B. bufo was found to increase with the area of semi-wooded and herbaceous vegetation, and decrease with the area of roads and urbanized areas. Genetic diversity of B. calamita increased with the area of bare ground and of quarries, and decreased with the area of dense woods. We found no effect of quarrying on B. bufo, unlike for B. calamita in which genetic diversity was favoured by quarrying at all three time-points. Despite having similar generation times, B. bufo’s diversity was best explained by 1940s landscape and that of B. calamita by 2000s landscape. This study enlightens the genetic conservation value of quarries for pioneer species and the possible delays between landscape changes and their effects on the populations of some, but not all, species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arens P, van der Sluis T, van’t Westende WPC, Vosman B, Vos CC, Smulders MJM (2007) Genetic population differentiation and connectivity among fragmented Moor frog (Rana arvalis) populations in The Netherlands. Land Ecol 22:1489–1500

    Article  Google Scholar 

  • Banks B, Beebee TJC, Cooke AS (1994) Conservation of the Natterjack toad Bufo calamita in Britain over the period 1970–1990 in relation to site protection and other factors. Biol Cons 67:111–118

    Article  Google Scholar 

  • Barnaud G, Le Bloch F (1998) Entre Terre et Eau, Agir pour les zones humides, Dossier d’information. Ministère de l’aménagement du territoire et de l’environnement, Paris, France

  • Beebee TJC (1983) The Natterjack Toad. Oxford University Press, Oxford

    Google Scholar 

  • Beebee TJC (2013) Effects of road mortality and mitigation measures on amphibian populations. Cons Biol 27:657–668

    Article  Google Scholar 

  • Belkhir K et al (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la Génetique des populations. Laboratoire genome, populations, interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, France. URL: http://www.genetix.univmontp2.fr/genetix/intro.htm

  • Benes J, Kepka P, Konvicka M (2003) Limestone quarries as refuges for European xerophilous butterflies. Cons Biol 17:1058–1069

    Article  Google Scholar 

  • Berhe AA (2007) The contribution of landmines to land degradation. Land Degrad Dev 18:1–15

    Article  Google Scholar 

  • Blanchong JA, Sorin AB, Scribner KT (2013) Genetic diversity and population structure in urban white-tailed deer. J Wild Manag 77:855–862

    Article  Google Scholar 

  • Brandle M, Durka W, Altmoos M (2000) Diversity of area dwelling beetle assemblages in open-cast lignite mines in Central Germany. Biodivers Cons 9:1297–1311

    Article  Google Scholar 

  • Brede EG, Rowe G, Trojanowski J, Beebee TJC (2001) Polymerase chain reaction primers for microsatellite loci in the common toad Bufo bufo. Mol Ecol Notes 1:308–310

    Article  CAS  Google Scholar 

  • Bzdon G (2008) Gravel pits as habitat islands: floristic diversity and vegetation analysis. Pol J Ecol 56:239–250

    Google Scholar 

  • Carlsson J, Mcdowell JR, Diaz-Jaimes P, Carlsson JEL, Boles SB, Gold JR, Graves JE (2004) Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (Thunnus thynnus thynnus) population structure in the Mediterranean Sea. Mol Ecol 13:3345–3356

    Article  CAS  PubMed  Google Scholar 

  • Clements R, Sodhi NS, Schiltuizen M, Kling P (2006) Limestone Karsts of Southeast Asia: imperiled arks of biodiversity. BioSci 56:733–742

    Article  Google Scholar 

  • Colwell RK, Mao CX, Chang J (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecol 85:2717–2727

    Article  Google Scholar 

  • Cooke AS, Oldham RS (1995) Establishment of populations of the common frog, Rana temporaria, and common toad, Bufo bufo, in a newly created reserve following translocation. Herpetol 5:173–180

    Google Scholar 

  • Crow JF, Aoki K (1984) Group selection for a polygenic behavioural trait—estimating the degree of population subdivision. Proc of the Natl Acad of Sci of the USA Biol Sci 81:6073–6077

    Article  CAS  Google Scholar 

  • Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Cons 128:231–240

    Article  Google Scholar 

  • Denton JS (1991) The terrestrial ecology of the natterjack Bufo calamita and the common toad, Bufo bufo. Dissertation, University of Sussex

  • Denton J, Beebee TJC (1991) Terrestrial ecology of the natterjack toad Bufo calamita. In: Korsos Z, Kiss I (eds) Proceedings of the Sixth Ordinary General Meeting. S. E. H, Budapest, pp 137–141

    Google Scholar 

  • Denton JS, Beebee TJC (1993) Reproductive strategies in a female biased population of Natterjack toads, Bufo calamita. Anim Behav 46:1169–1175

    Article  Google Scholar 

  • Denton JS, Beebee T (1994) The basis of niche separation during terrestrial life between two species of toad Bufo bufo and Bufo calamita: competition or specialisation? Oecol 97:390–398

    Article  Google Scholar 

  • Denton JS, Beebee TJC (1996) Double clutching by natterjack toads Bufo calamita at a site in southern England. Amphib Reptil 17:159–167

    Article  Google Scholar 

  • Dixo M, Metzger JP, Morgante JS, Zamudio KR (2009) Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic Coastal Forest. Biol Cons 142:1560–1569

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Cons Genet Resour 4:359–361

    Article  Google Scholar 

  • Eggert C, Miaud C (2004) Estimation de la réussite du déplacement de populations de Crapaud calamite et Pélodyte ponctué dans le cadre de l’aménagement du Port Autonome du Havre Port 2000-Bilan au terme de la 3ème année. LBPA Université de Savoie, Le Bourget du Lac

    Google Scholar 

  • Epps CW, Palsoll PJ, Wehausen JD, Roderick GK, Ramey RR II, McCullough DR (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8:1029–1038

    Article  Google Scholar 

  • Epps CW, Wasser SK, Keim JL, Mutayoba BM, Brashares JS (2013) Quantifying past and present connectivity illuminates a rapidly changing landscape for the African elephant. Mol Ecol 22:1574–1588

    Article  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Evol Syst 34:487–515

    Article  Google Scholar 

  • Frankham R, Balou J, Briscoe D (2010) Introduction to Conservation Genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gauffre B, Estoup A, Bretagnolle V, Cosson JF (2008) Spatial genetic structure of a small rodent in a heterogeneous landscape. Mol Ecol 17:4619–4629. doi:10.1111/j.1365-294X.2008.03950.x

    Article  CAS  PubMed  Google Scholar 

  • Glandt D (1986) Die saisonalen wanderungen der mitteleuropaischer amphibicn. Bonn Zool Beitr 37:211–228

    Google Scholar 

  • Goldberg CS, Waits LP (2010) Comparative landscape genetics of two pond-breeding amphibian species in a highly modified agricultural landscape. Mol Ecol 19:3650–3663

    Article  PubMed  Google Scholar 

  • Gonzalez A, Ronce O, Ferriere R, Hochberg ME (2012) Evolutionary rescue: an emerging focus at the intersection between ecology and evolution. Phil Trans of R Soc- Biol Sci 368:1610

    Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Halley JW, Oldham RS, Arntzen JW (1996) Predicting the persistence of amphibian populations with the help of a spatial model. J Appl Ecol 33:455–470

    Article  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford

    Google Scholar 

  • Hartel T, Nemes S, Demeter L, Oellerer K (2008) Pond and landscape characteristics - which is more important for common toads (Bufo bufo)? A case study from central Romania. Appl Herpetol 5:1–12

    Article  Google Scholar 

  • Hitchings SP, Beebee JTC (1998) Loss of genetic diversity and fitness in Common Toad (Bufo bufo) populations isolated by inimical habitat. J Evol Biol 11:269–283

    Google Scholar 

  • Hof C, Araujo MB, Jetz W, Rahbek C (2011) Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nat 480:516–519

    CAS  Google Scholar 

  • Hoffman JI, Peck LS, Linse K, Clarke A (2011) Strong population genetic structure in a broadcast-spawning antarctic marine invertebrate. J Hered 102:55–66

    Article  CAS  PubMed  Google Scholar 

  • Holzhauer SIJ, Ekschmitt K, Sander A, Dauber J, Wolters V (2006) Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeseli. Landsc Ecol 21:891–899

    Article  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed Central  PubMed  Google Scholar 

  • Hughes A et al (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623

    Article  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinforma 23:1801–1806

    Article  CAS  Google Scholar 

  • Janin A, Léna JP, Ray N, Delacourt D, Allemand P, Joly P (2009) Assessing landscape connectivity with calibrated cost-distance modelling: predicting common toad distribution in a context of spreading agriculture. J App Ecol 46:833–841

    Article  Google Scholar 

  • Karraker N, Gibbs JP (2009) Amphibian production in forested landscapes in relation to wetland hydroperiod: a case study of vernal pools and beaver ponds. Biol Cons 142:2293–2302

    Article  Google Scholar 

  • Kovacs JC (2001) Le patrimoine écologique des zones humides issues de l’exploitation des carrières. Etude Ecosphère- Comité Nationale de la Charte Environnement de l’UNPG

  • Lameed GA, Ayodele AE (2010) Effect of quarrying activity on biodiversity: case study of Ogbere site, Ogun State Nigeria. African J Env Sci Technol 4:740–750

    Google Scholar 

  • Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952

    Article  Google Scholar 

  • Martino L, Fritz M (2008) New insight into land cover and land use in Europe. Eurostat 33/2008

  • Moura AE, Natoli A, Rogan E, Hoelzel AR (2012) Atypical panmixia in a European dolphin species (Delphinus delphis): implications for the evolution of diversity across oceanic boundaries. J Evol Biol 26:63–75

    Article  PubMed  Google Scholar 

  • Novak J, Konvicka M (2006) Proximity of valuable habitats affects succession patterns in abandoned quarries. Ecol Eng 26:113–122

    Article  Google Scholar 

  • Orsini L, Corander J, Alasentie A, Hanski I (2008) Genetic spatial structure in a butterfly metapopulations correlates better with past than present demographic structure. Mol Ecol 17:2629–2642

    Article  CAS  PubMed  Google Scholar 

  • Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the priorization of habitat patches and corridors for conservation. Landsc Ecol 21:959–967

    Article  Google Scholar 

  • Peakall R, Smouse P (2005) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE, Huff DR (1995) Evolutionary implications of allozyme and RAPD variation in diploid populations of buffalograss Buchloe dactyloides. Mol Ecol 4:135–147

    Article  CAS  Google Scholar 

  • Peakall R, Ruibal M, Lindenmayer DB (2003) Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evol 57:1182–1195

    Article  Google Scholar 

  • Piha H, Luoto M, Merila J (2007) Amphibian occurrence is influenced by current and historic landscape characteristics. Ecol Appl 17:2298–2309

    Article  PubMed  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-plus. Springer, London

    Book  Google Scholar 

  • Pope SE, Fahrig L, Merriam NG (2000) Landscape complementation and metapopulation effects on leopard frog populations. Ecol 81:2498–2508

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genet 155:945–959

    CAS  Google Scholar 

  • Rannap R, Lohmus A, Jakobson K (2007) Consequences of coastal meadow degradation: the case of the natterjack toad (Bufo calamita) in Estonia. Wetl 27:390–398

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reading CJ, Loman J, Madsen T (1991) Breeding pond fidelity in the common toad, Bufo bufo. J Zoo Soc Lond 225:201–211

    Article  Google Scholar 

  • Rogell B, Gyllenstrand N, Höglund J (2005) Six polymorphic microsatellite loci in the natterjack toad Bufo calamita. Mol Ecol Notes 5:639–640

    Article  CAS  Google Scholar 

  • Romero J, Real R (1996) Macroenvironmental factors as ultimate determinants of distribution of common toad and natterjack toad in the south of Spain. Ecogr 19:305–312

    Article  Google Scholar 

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genet 145:1219–1228

    CAS  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Rowe G, Beebee TJC, Burke T (1997) PCR primers for polymorphic microsatellite loci in the anuran amphibian Bufo calamita. Mol Ecol 6:401–402

    Article  CAS  PubMed  Google Scholar 

  • Rowe G, Beebee TJC, Burke T (2000) A microsatellite analysis of natterjack toad, Bufo calamita, metapopulations. Oikos 88:641–651

    Article  Google Scholar 

  • Rowe G, Beebee TJC, Burke T (2001) A further four polymorphic microsatellite loci in the natterjack toad Bufo calamita. Conserv Genet 1:371–372

    Article  Google Scholar 

  • Santoul F (2000) L’avifaune aquatique des gravières de la plaine alluviale de la Garonne Dissertation, University of Toulse III

  • Santoul F, Gaujard A, Angélibert S, Mastrorillo S, Céréghino R (2009) Gravel pits support waterbird diversity in an urban landscape. Hydrobiol 634:107–114

    Article  Google Scholar 

  • Saura S, Pascual-Hortal L (2007a) Conefor Sensinode 2.2. Users manual. Software for quantifying the importance of habitat patches for landscape connectivity through graphs and habitat availability indices, University of Lleida, Spain

  • Saura S, Pascual-Hortal L (2007b) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83(2–3):91–103

    Article  Google Scholar 

  • Schlupp I, Podloucky R (1994) Changes in breeding site fidelity: a combined study of conservation and behaviour in the common toad Bufo bufo. Biol Cons 69:285–291

    Article  Google Scholar 

  • Schulz F, Wiegleb G (2000) Development options of natural habitats in a post-mining landscape. Land Degrad Dev 11:99–110

    Article  Google Scholar 

  • Scribner KT, Arntzen JW, Cruddace N, Oldham RS, Burke T (2001) Environmental correlates of toad abundance and population genetic diversity. Biol Cons 98:201–210

    Article  Google Scholar 

  • Sinsch U (1989) Migratory behaviour of the common toad (Bufo bufo) and the natterjack toad (Bufo calamita). In: T.E.S. Langton (ed) Amphibians and Roads. pp 113–125

  • Sinsch U (1990) Migration and orientation in anuran amphibians. Ethol Ecol Evol 2:65–79

    Article  Google Scholar 

  • Sinsch U (1992) Structure and dynamic of a Natterjack toad metapopulation (Bufo calamita). Oecol 90:489–499

    Article  Google Scholar 

  • Sinsch U (1997) Postmetamorphic dispersal and recruitment of first breeders in a Bufo calamita metapopulation. Oecol 112:42–47

    Article  Google Scholar 

  • Sinsch U, Oromi N, Miaud C, Denton J, Sanuy D (2012) Connectivity of local amphibian populations: modelling the migratory capacity of radiotracked natterjack toads. Anim Cons 15:388–396

    Article  Google Scholar 

  • Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecogr 28:110–128

    Article  Google Scholar 

  • Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Hered 82:561–573

    Article  Google Scholar 

  • Stevens VM, Polus E, Wesselingh RA, Schtickzelle N, Baguette M (2004) Quantifying functional connectivity: experimental evidence for patch-specific resistance in the natterjack toad (Bufo calamita). Landsc Ecol 19:829–842

    Article  Google Scholar 

  • Stevens VM, Verkenne C, Vandewoestijne S, Wesselingh RA, Baguette M (2006) Gene flow and functional connectivity in the natterjack toad. Mol Ecol 15:2333–2344

    Article  CAS  PubMed  Google Scholar 

  • Taylor PD et al (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Article  Google Scholar 

  • R Core Team (2013). R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/

  • Tropek R, Konvicka M (2008) Can quarries supplement rare xeric habitats in a piedmont region? Spiders of the Blanksi les Mts, Czech Republic. Land Degrad Develop 19:104–114

    Article  Google Scholar 

  • Van Loon EE, Cleary DFR, Fauvelot C (2007) ARES: software to compare allelic richness between uneven samples. Mol Ecol Notes 7:579–582

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Willis DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Varvio SL, Chakraborty R, Nei M (1986) Genetic-variation in subdivided populations and conservation genetics. Hered 57:189–198

    Article  Google Scholar 

  • Voetzel D, Rohaut M, Arbion M (2008) Potentialités écologiques des carrières de roche massive. Etude UNPG

  • Wang J (2004) Sibship reconstruction from genetic data with typing errors. Genet 166:1963–1979

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evol 38:1358–1370

    Article  Google Scholar 

  • Wilcox BA, Murphy DD (1985) Conservation strategy – The effects of fragmentation on extinction. Am Nat 125:879–887

    Article  Google Scholar 

  • Zellmer AJ, Knowles LL (2009) Disentangling the effects of historic vs. contemporary landscape structure on population genetic divergence. Mol Ecol 18:3593–3602

    Article  CAS  PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Statistics for Biology and Health. Springer-Verlag, New York

    Book  Google Scholar 

Download references

Acknowledgments

We are indebted to Bernard Frochot, Jean-Claude Lefeuvre, Pierre Joly, Stéphanie Manel, Steve Palmer, Virginie Stevens and Justin Travis for helpful comments on this work. We are also grateful to Khaldia Akkar and Marielle Perroz for technical hep during data collection, to Hugo Anest, Karen Cheurlot, Emeline Hudik, Basile Hurault, Jérémy Gauthier, Emilie Klam, Angeline Lesueur, Michael Pereira, Jennifer Thomas and Nicolas Zilbermann for field work, to Jeffrey Carbillet, Louise Keszler, Lise Lallemand, Jérôme Lin, Flore Loyer and Solène Sacré for GIS work, and to Florian Lesage, Josie Lambourdière and Jose Utge for genetic data collection. All molecular analyses were supported by the ‘Service de Systématique Moléculaire’ of the Muséum National d’Histoire Naturelle (UMS 2700; OMSI). We thank Julio Pedraza-Acosta (UMS 2700; OMSI) for providing high-performance computing facilities. We finally thank the French National Union of Aggregates and the participating quarrying companies which have led us to sample operating sites in the person of Yves Adam and Christian Béranger, and the engineering office ENCEM in the person of Olivier Verdier, Johan Gourvil and Pascal Maurel for technical information about quarry ecology. This study was co-funded by the French Agence Nationale de la Recherche et de la Technologie (ANRT) and the Engineering office ENCEM (Cifre Contract n° 1209/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Théo Flavenot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 991 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flavenot, T., Fellous, S., Abdelkrim, J. et al. Impact of quarrying on genetic diversity: an approach across landscapes and over time. Conserv Genet 16, 181–194 (2015). https://doi.org/10.1007/s10592-014-0650-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0650-8

Keywords

Navigation