Skip to main content
Log in

The declining Spadefoot toad, Pelobates fuscus (Pelobatidae): paleo and recent environmental changes as a major influence on current population structure and status

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Populations of the European Spadefoot toad (Pelobates fuscus) have experienced recent declines all over Europe, but these appear to be more intense in north and western Europe. Due to the toad’s fossorial nature and specific habitat requirements, environmental conditions have played a major role in structuring current populations. We examined the phylogeographic structure in P. fuscus from 16 localities throughout Europe using mitochondrial cytochrome b gene sequence analysis. Sequence divergence among haplotypes was low (0.54±0.15%). Three very closely related haplotypes occupy northern and western parts of Europe whereas 12 others were observed among samples from south-eastern Europe, including the Balkans. Our results suggest that toads only recently colonized the northern and western parts of Europe following glacial retreat. This expansion probably took place in steppic-like areas during the younger Dryas cold interval, about 12,900–11,500 years ago. Restricted gene flow with an isolation-by-distance population structure characterises a major part of its distribution range. Based on our results we suggest that the northern and western lineages should be considered as distinct conservation units, while the south-eastern populations from the refugial areas, where nearly all genetic polymorphism occurs and populations appear less vulnerable, should receive special attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams JM, Faure H (eds) (1997). QEN members. Review and Atlas of Palaeovegetation: Preliminary land ecosystem maps of the world since the Last Glacial Maximum. Oak Ridge National Laboratory, TN, USA, http://www.esd.ornl.gov/ern/qen/adams1.html

    Google Scholar 

  • Andreone F, Fortina R, Chiminello A (1993). Natural History, Ecology and Conservation of the Italian Spadefoot Toad, Pelobates fuscus insubricus. Societa Zoologica La Torbiera, Novara

    Google Scholar 

  • Avise JC (1992). Molecular population structure and the biogeographic history of a regional fauna: a case history with lessons for conservation biology. Oikos 63: 62–76

    Article  CAS  Google Scholar 

  • Avise JC (2000). Phylogeography. The History and Formation of Species, Harvard University Press, Cambridge

    Google Scholar 

  • Avise JC, Walker D, Johns GC (1998). Speciation durations and Pleistocene effects on vertebrate phylogeography. Proc. Roy. Soc. Lond. B 265: 1707–1712

    Article  CAS  Google Scholar 

  • Baillie JEM, Hilton-Taylor C, Stuart SN (eds.) (2004) 2004 IUCN Red List of Threatened Species A Global Species Assessment. IUCN, Gland, Switzerland and Cambridge, UK, 191 pp

  • Bailon S (1991) Amphibiens et reptiles du Pliocène et du Quaternaire de France et d’Espagne: Mise en place et évolution des faunes. PhD Thesis, Université de Paris VII, France

  • Bailon S, Rage JC (1992). Amphibiens et Reptiles du Quaternaire. Relations avec l’homme. Mém. Soc. géol. Fr. 160: 95–100

    Google Scholar 

  • Barber PH (1999). Patterns of gene flow and population genetic structure in the canyon treefrog, Hyla arenicolor (Cope). Mol. Ecol. 8: 563–576

    Article  PubMed  CAS  Google Scholar 

  • Berglund B (1998) Projekt Lökgroda 1993–1996. Länsstyrelsen i Skane län (ed.). Malmö, Sweden

  • Borkin LJ, Litvinchuk SN, Rosanov JM, Milto KD (2001). Cryptic speciation in Pelobates fuscus (Anura, Pelobatidae): evidence from DNA flow cytometry. Amphibia-Reptilia 22: 387–396

    Article  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000). TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9: 1657–1659

    Article  PubMed  CAS  Google Scholar 

  • Collins JP, Storfer A (2003). Global amphibian declines: sorting the hypotheses. Diversity Distrib. 9: 89–98

    Article  Google Scholar 

  • Crnobrnja-Isailović J, Džukić G, Krstić N, Kalezić ML (1997). Evolutionary and paleogeographical effects on the distribution of the Triturus cristatus superspecies in the central Balkans. Amphibia-Reptilia 18: 321–332

    Article  Google Scholar 

  • Dubois A (1998). Mapping European amphibians and reptiles: collective inquiry and scientific methodology. Alytes 15: 176–204

    Google Scholar 

  • Džukić G, Beskov V, Sidorovska V, Cogălniceanu D, Kalezić M (2005). Historical and contemporary ranges of the Spadefoot toads (Pelobates spp., Amphibia, Anura) in the Balkan Peninsula. Acta Zoologica Cracoviensia 48: 1–9

    Google Scholar 

  • Dzukic G, Kalezic M (2004). The biodiversity of amphibians and reptiles in the Balkan peninsula. In: Balkan Biodiversity (ed. Griffiths HI et al.), pp. 167–192. Kluwer Academic Publishers

  • Eggert C (2000) Le déclin du Pélobate brun (Pelobates fuscus, Amphibien Anoure): Apport de la phylogéographie et de la dynamique de population à sa compréhension. Implications pour sa conservation. PhD thesis, University of Savoie, France

  • Eggert C (2002). Use of fluorescent pigments and implantable transmitters to track a fossorial toad (Pelobates fuscus). Herp. J. 12: 69–74

    Google Scholar 

  • Fog K, Schmedes A, de Lasson DR (1997). Nordens padder og krybdyr. En felthåndbog, Gads Forlag, København

    Google Scholar 

  • Frenzel B, Pecsi B, Velichko AA (eds) (1992). Atlas of Palaeoclimates and Palaeoenvironments of the Northern Hemisphere. INQUA/Hungarian Academy of Sciences, Budapest

    Google Scholar 

  • Gardner T (2001). Declining amphibian populations: a global phenomenon in conservation biology. Anim. Biodiv. Conserv. 24: 25–44

    Google Scholar 

  • Gislen T (1938). On the history of evolution and distribution of the European Pelobatids. Zoogeographica 3: 119–131

    Google Scholar 

  • Gislen T, Kauri H (1959). Zoogeography of the Swedish amphibians and reptiles with notes on their growth and ecology. Acta Vert. 1: 195–398

    Google Scholar 

  • Gleed-Owen CP (2000). Subfossil records of Rana cf. lessonae, Rana arvalis and Rana cf. dalmatina from Middle Saxon (c. 600–950 AD) deposits in eastern England: evidence for native status. Amphibia-Reptilia 21: 57–65

    Article  Google Scholar 

  • Hels T (2002). Population dynamics in a Danish metapopulation of Spadefoot toads (Pelobates fuscus). Ecography 25: 303–313

    Article  Google Scholar 

  • Hewitt G (1996). Some genetic consequences of the ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58: 247–276

    Google Scholar 

  • Hewitt G (2000). The genetic legacy of the Quaternary ice ages. Nature 405: 907–913

    Article  PubMed  CAS  Google Scholar 

  • Irwin DM, Kocher TD, Wilson AC (1991). Evolution of the cytochrome b gene mammals. J. Mol. Evol. 32: 128–144

    Article  PubMed  CAS  Google Scholar 

  • Johns GC, Avise JC (1998). A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Mol. Biol. Evol. 15: 1481–1490

    PubMed  CAS  Google Scholar 

  • Kalezić ML (1984). Evolutionary divergences in the smooth newt, Triturus vulgaris (Urodela, Salamandridae): electrophoretic evidence. Amphibia-Reptilia 5: 221–230

    Article  Google Scholar 

  • Kauri H (1946). Die Verbreitung der Amphibien und Reptilien in Estland. Kungl. Fysiografiska Sallskapets I Lund Forhandlingar. 16: 167–186

    Google Scholar 

  • Kiesecker JM, Blaustein AR, Belden LK (2001). Complex causes of amphibian population declines. Nature 410: 681–684

    Article  PubMed  CAS  Google Scholar 

  • Knowles LL, Maddison WP (2002). Statistical phylogeography. Mol. Ecol. 11: 2623–2635

    Article  PubMed  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2003). MEGA3: Molecular Evolutionary Genetics Analysis software. Arizona State University, Tempe, Arizona, USA

    Google Scholar 

  • Kuzmin SL (1999). The Amphibians of the Former Soviet Union. Pensoft, Sofia, Moscow

    Google Scholar 

  • Lambeck K (1997). Sea-level change along the French Atlantic Channel coasts since the time of the Last Glacial Maximum. Palaeogeo. Palaeoclim. Palaeoeco. 129: 1–22

    Article  Google Scholar 

  • Lescure J (1984). La répartition passée et actuelle des Pélobates (Amphibiens Anoures) en France. Bull. Soc. Herp. Fr. 29: 45–59

    Google Scholar 

  • Martinez-Rica JP (1997) General features of European climate and vegetation consequences on the distribution of herpetofauna. In: Atlas of Amphibians and Reptiles in Europe (eds. Societas Europaea Herpetologica, Muséum National d’Histoire Naturelle), pp. 17–21. IEGB/SPN, Paris

  • Meissner K (1970). Obligatorisches Lernen im Funktionskreis der Vergrabehandlung von Pelobates fuscus fuscus Laur. (Anura). Ein Beitrag zur Ethometrie des Appetenzverhaltens. Zool. Jb. Physiol. 75: 423–469

    Google Scholar 

  • Mlynarski M (1962). Notes on the amphibian and reptilian fauna of the Polish Pliocene and Early Pleistocene. Acta Zool. Cracov. 7: 177–194

    Google Scholar 

  • Moritz C (1994a). Defining “evolutionary significant units” for conservation. Trends Ecol. Evol. 9: 373–375

    Article  Google Scholar 

  • Moritz C (1994b). Applications of mitochondrial DNA analysis in conservation: a critical review. Mol. Ecol. 3: 401–411

    Article  CAS  Google Scholar 

  • Nei M. (1987) Molecular Evolutionary Genetics. Columbia Univ. Press, New York

    Google Scholar 

  • Nevo E, Beiles A (1991). Genetic diversity and ecological heterogeneity in amphibian evolution. Copeia 1991: 565–592

    Article  Google Scholar 

  • Nöllert A (1997) Pelobates fuscus (Laurenti, 1768). In: Atlas of Amphibians and Reptiles in Europe (eds. Societas Europaea Herpetologica, Muséum National d’Histoire Naturelle), pp. 110–111. IEGB/SPN, Paris

  • Parent G (1985). Précisions sur la répartition du Pelobate brun, Pelobates fuscus (Laurenti, 1768), en France. Alytes 4: 52–60

    Google Scholar 

  • Pelt FL, Van Bree PJH (1965). Enkele aantekeningen over de knoflookpad, Pelobates fuscus (Laurenti, 1768) in Nederland. Overdr. Nat. Hist. Maandbl. 54: 58–65

    Google Scholar 

  • Perczy C (1994). Le site à Pelobates de la région Wallonne. Les cahiers des Réserves Naturelles – RNOB. 7: 105–108

    Google Scholar 

  • Phillips CA (1994). Geographic distribution of mitochondrial DNA variants and the historical biogeography of the spotted salamander Ambystoma maculatum. Evolution 48: 597–607

    Article  Google Scholar 

  • Phillips CA, Suau G, Templeton A (2000). Effects of Holocene climate fluctuation on mitochondrial DNA variation in the ringed salamander, Ambystoma annulatum. Copeia 2000: 542–545

    Article  Google Scholar 

  • Posada D, Crandall KA (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA, Templeton AR (2000). GeoDis: A program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol. Ecol. 9: 487–488

    Article  PubMed  CAS  Google Scholar 

  • Rappė G (1982). Nieuwe gegevens over het voorkomen van Pelobates fuscus (Laurenti) (Anura, Pelobatidae) in België. Biol. Jb. Dodonaea 50: 255–259

    Google Scholar 

  • Riberon A, Miaud C, Grossenbacher K, Taberlet P (2001). Phylogeography of the Alpine salamander, Salamandra atra (Salamandridae) and the influence of the Pleistocene climatic oscillations on population divergence. Mol. Ecol. 10: 2555–2560

    Article  PubMed  CAS  Google Scholar 

  • Roček Z (1988). List of fossil amphibians of Czechoslovakia. Acta zool. Cracov. 31: 513–540

    Google Scholar 

  • Rowe G, Beebee TJC, Burke T (1999). Microsatellite heterozygosity, fitness and demography in natterjack toads Bufo calamita. Anim. Cons. 2: 85–92

    Article  Google Scholar 

  • Rozas J., Sánchez-Delbarrio JC, Messeguer X, Rozas R (2003). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Ryder OA (1986). Species conservation and systematics: the dilemma of subspecies. Trends Ecol. Evol. 1: 9–10

    Article  Google Scholar 

  • Shpun S, Hoffman E, Nevo E, Katz U (1993). Is the distribution of Pelobates syriacus related to its limited osmoregulatory capacity?. Comp. Biochem. Physiol. 105A: 135–139

    Article  Google Scholar 

  • Stewart JR, Lister AM (2001). Cryptic northern refugia and the origins of modern biota. Trends Ecol. Evol. 16: 608–613

    Article  Google Scholar 

  • Swofford DL (1998). PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sinauer Associates, Sunderland MA

    Google Scholar 

  • Taberlet P (1998). Biodiversity at the intraspecific level: the comparative phylogeographic approach. J. Biotechnol. 64: 91–100

    Article  CAS  Google Scholar 

  • Taberlet P, Cheddadi R (2002). Quaternary refugia and persistence of biodiversity. Science 297: 2009–2010

    Article  PubMed  CAS  Google Scholar 

  • Taberlet P, Meyer A, Bouvet J (1992). Unusual mitochondrial DNA polymorphism in two local populations of blue tit Parus caerulus. Mol. Ecol. 1: 27–36

    Article  PubMed  CAS  Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy AG, Cossons JF (1998). Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7: 453–464

    Article  PubMed  CAS  Google Scholar 

  • Templeton AR (2004). Statistical phylogeography: methods of evaluating and minimizing inference errors. Mol. Ecol. 13: 789–809

    Article  PubMed  Google Scholar 

  • Templeton AR, Boerwinkle E, Sing CF (1987). A cladistic analysis of phenotypic association with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. I. Basic theory and an analysis of alcohol dehydrogenase activity in Drosophila. Genetics 117: 343–351

    PubMed  CAS  Google Scholar 

  • Templeton AR, Routman E, Phillips CA (1995). Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140: 767–782

    PubMed  CAS  Google Scholar 

  • Templeton AR, Sing CF (1992). A cladistic analysis of phenotypic association with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. IV. Nested analyses with cladogram uncertainty and recombination. Genetics 134: 659–669

    Google Scholar 

  • Venczel M (1989). Data on the herpetofauna from fossil deposits of Burzău-Rîpa, Bihor County. Crisia 19: 761–771

    Google Scholar 

Download references

Acknowledgements

This study was mainly supported by the French Office National des Forêts and Electricité de France. One of the author (G.D.) is partly supported by the Ministry of Science, Technology and Development of Serbia (project title “Integrative study of amphibians and reptiles of the central Balkans”, grant No. 1623). We thank C. LeBihan (ONF), R. Guyétant, and A. Ribéron for assistance and R. Jehle, E. Ripfl, A. Bitz, B. Ujvari, M. Puky, A. Stumpel, V. Lacoste and K. Grossenbacher for providing us with tissue samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Eggert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eggert, C., Cogălniceanu, D., Veith, M. et al. The declining Spadefoot toad, Pelobates fuscus (Pelobatidae): paleo and recent environmental changes as a major influence on current population structure and status. Conserv Genet 7, 185–195 (2006). https://doi.org/10.1007/s10592-006-9124-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-006-9124-y

Keywords

Navigation