Skip to main content
Log in

\(L^1\) penalization of volumetric dose objectives in optimal control of PDEs

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This work is concerned with a class of PDE-constrained optimization problems that are motivated by an application in radiotherapy treatment planning. Here the primary design objective is to minimize the volume where a functional of the state violates a prescribed level, but prescribing these levels in the form of pointwise state constraints leads to infeasible problems. We therefore propose an alternative approach based on \(L^1\) penalization of the violation that is also applicable when state constraints are infeasible. We establish well-posedness of the corresponding optimal control problem, derive first-order optimality conditions, discuss convergence of minimizers as the penalty parameter tends to infinity, and present a semismooth Newton method for their efficient numerical solution. The performance of this method for a model problem is illustrated and contrasted with an alternative approach based on (regularized) state constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barnard, R., Frank, M., Herty, M.: Optimal radiotherapy treatment planning using minimum entropy models. Appl. Math. Comput. 219(5), 2668–2679 (2012). doi:10.1016/j.amc.2012.08.099

    MathSciNet  MATH  Google Scholar 

  2. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011). doi:10.1007/978-1-4419-9467-7

    Book  MATH  Google Scholar 

  3. Brezis, H., Crandall, M.G., Pazy, A.: Perturbations of nonlinear maximal monotone sets in Banach space. Commun. Pure Appl. Math. 23(1), 123–144 (1970). doi:10.1002/cpa.3160230107

    Article  MathSciNet  MATH  Google Scholar 

  4. Clason, C., Ito, K., Kunisch, K.: A convex analysis approach to optimal controls with switching structure for partial differential equations. ESAIM Control Optim. Calc. Var. 22(2), 581–609 (2016). doi:10.1051/cocv/2015017

    Article  MathSciNet  MATH  Google Scholar 

  5. Clason, C., Jin, B.: A semismooth Newton method for nonlinear parameter identification problems with impulsive noise. SIAM J. Imaging Sci. 5, 505–538 (2012). doi:10.1137/110826187

    Article  MathSciNet  MATH  Google Scholar 

  6. Clason, C., Kunisch, K.: Multi-bang control of elliptic systems. Annales de l’Institut Henri Poincaré (C) Analyse Non Linéaire 31(6), 1109–1130 (2014). doi:10.1016/j.anihpc.2013.08.005

    Article  MathSciNet  MATH  Google Scholar 

  7. Clason, C., Rund, A., Kunisch, K., Barnard, R.C.: A convex penalty for switching control of partial differential equations. Syst. Control Lett. 89, 66–73 (2016). doi:10.1016/j.sysconle.2015.12.013

    Article  MathSciNet  MATH  Google Scholar 

  8. Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. Classics in Applied Mathematics, vol. 28. SIAM, Philadelphia (1999). doi:10.1137/1.9781611971088

    Book  MATH  Google Scholar 

  9. Frank, M., Herty, M., Hinze, M.: Instantaneous closed loop control of the radiative transfer equations with applications in radiotherapy. ZAMM Z. Angew. Math. Mech. 92(1), 8–24 (2012). doi:10.1002/zamm.201000191

    Article  MathSciNet  MATH  Google Scholar 

  10. Frank, M., Herty, M., Sandjo, A.N.: Optimal radiotherapy treatment planning governed by kinetic equations. Math. Models Methods Appl. Sci. 20(4), 661–678 (2010). doi:10.1142/S0218202510004386

    Article  MathSciNet  MATH  Google Scholar 

  11. Gugat, M.: Penalty techniques for state constrained optimal control problems with the wave equation. SIAM J. Control Optim. 48(5), 3026–3051 (2010). doi:10.1137/080725921

    Article  MathSciNet  MATH  Google Scholar 

  12. Gugat, M., Herty, M.: The smoothed-penalty algorithm for state constrained optimal control problems for partial differential equations. Optim. Methods Softw. 25(4), 573–599 (2010). doi:10.1080/10556780903002750

    Article  MathSciNet  MATH  Google Scholar 

  13. Herzog, R., Stadler, G., Wachsmuth, G.: Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 50(2), 943–963 (2012). doi:10.1137/100815037

    Article  MathSciNet  MATH  Google Scholar 

  14. Herzog, R., Stadler, G., Wachsmuth, G.: Erratum: Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 53(4), 2722–2723 (2015). doi:10.1137/15M102544X

    Article  MathSciNet  MATH  Google Scholar 

  15. Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Berlin (2001). doi:10.1007/978-3-642-56468-0

    Book  MATH  Google Scholar 

  16. Ito, K., Kunisch, K.: Semi-smooth Newton methods for state-constrained optimal control problems. Syst. Control Lett. 50(3), 221–228 (2003). doi:10.1016/S0167-6911(03)00156-7

    Article  MathSciNet  MATH  Google Scholar 

  17. Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia (2008). doi:10.1137/1.9780898718614

    Book  MATH  Google Scholar 

  18. Landberg, T., Chavaudra, J., Dobbs, J., Hanks, G., Johansson, K.A., Möller, T., Purdy, J.: ICRU report 50—prescribing, recording and reporting photon beam therapy. J. ICRU (1993). doi:10.1093/jicru/os26.1.Report50

  19. Shepard, D.M., Ferris, M.C., Olivera, G.H., Mackie, T.R.: Optimizing the delivery of radiation therapy to cancer patients. SIAM Rev. 41(4), 721–744 (1999). doi:10.1137/S0036144598342032

    Article  MATH  Google Scholar 

  20. Stadler, G.: Elliptic optimal control problems with L\(^1\)-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44(2), 159–181 (2009). doi:10.1007/s10589-007-9150-9

    Article  MathSciNet  MATH  Google Scholar 

  21. Tervo, J., Kokkonen, P., Frank, M., Herty, M.: On existence of \(L^2\)-solutions of coupled Boltzmann continuous slowing down transport equation system. arXiv:1603.05534 (2016)

  22. Treutwein, M., Bogner, L.: Elektronenfelder in der klinischen Anwendung. Strahlenther. Onkol. 183, 454–458 (2007). doi:10.1007/s00066-007-1687-0

    Article  Google Scholar 

  23. Ulbrich, M.: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. SIAM, Philadelphia (2011). doi:10.1137/1.9781611970692

    Book  MATH  Google Scholar 

  24. Zarepisheh, M., Shakourifar, M., Trigila, G., Ghomi, P.S., Couzens, S., Abebe, A., Noreña, L., Shang, W., Jiang, S.B., Zinchenko, Y.: A moment-based approach for DVH-guided radiotherapy treatment plan optimization. Phys. Med. Biol. 58(6), 1869 (2013). doi:10.1088/0031-9155/58/6/1869

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard C. Barnard.

Additional information

This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnard, R.C., Clason, C. \(L^1\) penalization of volumetric dose objectives in optimal control of PDEs. Comput Optim Appl 67, 401–419 (2017). https://doi.org/10.1007/s10589-017-9897-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-017-9897-6

Keywords

Mathematics Subject Classification

Navigation