Skip to main content
Log in

Scalarizations for adaptively solving multi-objective optimization problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper several parameter dependent scalarization approaches for solving nonlinear multi-objective optimization problems are discussed. It is shown that they can be considered as special cases of a scalarization problem by Pascoletti and Serafini (or a modification of this problem).

Based on these connections theoretical results as well as a new algorithm for adaptively controlling the choice of the parameters for generating almost equidistant approximations of the efficient set, lately developed for the Pascoletti-Serafini scalarization, can be applied to these problems. For instance for such well-known scalarizations as the ε-constraint or the normal boundary intersection problem algorithms for adaptively generating high quality approximations are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brosowski, B.: A criterion for efficiency and some applications. In: Brosowski, B., Martensen, E. (eds.) Optimization in Mathematical Physics. Methoden und Verfahren der Mathematischen Physik, vol. 34, pp. 37–59. Peter Lang, Frankfurt am Main (1987)

    Google Scholar 

  2. Charnes, A., Cooper, W.: Management Models and Industrial Applications of Linear Programming, vol. 1. Wiley, New York (1961)

    MATH  Google Scholar 

  3. Das, I., Dennis, J.E.: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Das, I.: An improved technique for choosing parameters for Pareto surface generation using normal-boundary intersection. In: Bloebaum, C.L., Lewis, K.E., et al. (eds.) Proceedings of the Third World Congress of Structural and Multidisciplinary Optimization (WCSMO-3), vol. 2, pp. 411–413. University at Buffalo, Buffalo (1999)

    Google Scholar 

  5. Dinkelbach, W., Dürr, W.: Effizienzaussagen bei Ersatzprogrammen zum Vektormaximumproblem. Oper.-Res.-Verfahren. 12, 69–77 (1972)

    Google Scholar 

  6. Ehrgott, M.: Multicriteria Optimisation. Springer, Berlin (2000)

    Google Scholar 

  7. Eichfelder, G.: Parametergesteuerte Lösung nichtlinearer multikriterieller Optimierungsprobleme. Ph.D. thesis, University of Erlangen-Nürnberg, Germany (2006)

  8. Eichfelder, G.: An adaptive scalarization method in multi-objective optimization. Preprint-Series of the Institute of Applied Mathematics, no. 308, University of Erlangen-Nürnberg, Germany (2006)

  9. Ester, J.: Systemanalyse und Mehrkriterielle Entscheidung. Technik, Berlin (1987)

    MATH  Google Scholar 

  10. Gembicki, F.W., Haimes, Y.Y.: Approach to performance and sensitivity multiobjective optimization: The goal attainment method. IEEE Trans. Automat. Contr. 6, 769–771 (1975)

    Article  Google Scholar 

  11. Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gerstewitz, C.: Nichtkonvexe Dualität in der Vektoroptimierung. Wissenschaftl. Z. Tech. Hochsch. Leuna-Merseburg 25(3), 357–364 (1983)

    MATH  MathSciNet  Google Scholar 

  13. Gourion, D., Luc, D.T.: Generating the weakly efficient set of nonconvex multiobjective problems. Prépublication 48, Université d’Avignon (2005)

  14. Haimes, Y.Y., Lasdon, L.S., Wismer, D.A.: On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. 1, 296–297 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  15. Helbig, S.: An interactive algorithm for nonlinear vector optimization. Appl. Math. Optim. 22(2), 147–151 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Helbig, S.: Approximation of the efficient point set by perturbation of the ordering cone. Z. Oper. Res. 35(3), 197–220 (1991)

    MATH  MathSciNet  Google Scholar 

  17. Hillermeier, C., Jahn, J.: Multiobjective optimization: survey of methods and industrial applications. Surv. Math. Ind. 11, 1–42 (2005)

    Article  MATH  Google Scholar 

  18. Jahn, J., Merkel, A.: Reference point approximation method for the solution of bicriterial nonlinear optimization problems. J. Optim. Theory Appl. 74(1), 87–103 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jahn, J.: Vector Optimization: Theory, Applications and Extensions. Springer, Berlin (2004)

    MATH  Google Scholar 

  20. Kaliszewski, I.: Quantitative Pareto Analysis by Cone Separation Technique. Kluwer Academic, Boston (1994)

    MATH  Google Scholar 

  21. Li, D., Yang, J.-B., Biswal, M.P.: Quantitative parametric connections between methods for generating noninferior solutions in multiobjective optimization. Eur. J. Oper. Res. 117, 84–99 (1999)

    Article  MATH  Google Scholar 

  22. Lin, J.G.: On min-norm and min-max methods of multi-objective optimization. Math. Program. 103(1), 1–33 (2005)

    Article  MathSciNet  Google Scholar 

  23. Marglin, S.A.: Public Investment Criteria. MIT Press, Cambridge (1967)

    Google Scholar 

  24. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic, Boston (1999)

    MATH  Google Scholar 

  25. Pascoletti, A., Serafini, P.: Scalarizing vector optimization problems. J. Optim. Theory Appl. 42(4), 499–524 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  26. Polak, E.: On the approximation of solutions to multiple criteria decision making problems. In: Zeleny, M. (ed.) Multiple Crit. Decis. Making, 22nd Int. Meet. TIMS, Kyoto 1975, pp. 271–282. Springer, Berlin (1976)

    Google Scholar 

  27. Ruzika, S., Wiecek, M.M.: Approximation methods in multiobjective programming. J. Optim. Theory Appl. 126(3), 473–501 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Academic Press, London (1985)

    MATH  Google Scholar 

  29. Sterna-Karwat, A.: Continuous dependence of solutions on a parameter in a scalarization method. J. Optim. Theory Appl. 55(3), 417–434 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sterna-Karwat, A.: Lipschitz and differentiable dependence of solutions on a parameter in a scalarization method. J. Aust. Math. Soc. A 42, 353–364 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  31. Weidner, P.: Ein Trennungskonzept und seine Anwendung auf Vektoroptimierungsprobleme. Professorial dissertation. University of Halle, Germany (1990)

  32. Wendell, R.E., Lee, D.N.: Efficiency in multiple objective optimization problems. Math. Program. 12, 406–414 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zadeh, L.: Optimality and non-scalared-valued performance criteria. IEEE Trans. Automatic Contr. 8, 59–60 (1963)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Eichfelder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichfelder, G. Scalarizations for adaptively solving multi-objective optimization problems. Comput Optim Appl 44, 249–273 (2009). https://doi.org/10.1007/s10589-007-9155-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9155-4

Keywords

Navigation