Skip to main content
Log in

A note on the congruence \(\left( {_{mp^k }^{np^k } } \right) \equiv \left( {_m^n } \right)\) (mod p r)

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

In the paper we discuss the following type congruences:

$$\left( {_{mp^k }^{np^k } } \right) \equiv \left( {_m^n } \right)(\bmod p^r ),$$

where p is a prime, n, m, k and r are various positive integers with nm ⩾ 1, k ⩾ 1 and r ⩾ 1. Given positive integers k and r, denote by W(k, r) the set of all primes p such that the above congruence holds for every pair of integers nm ⩾ 1. Using Ljunggren’s and Jacobsthal’s type congruences, we establish several characterizations of sets W(k, r) and inclusion relations between them for various values k and r. In particular, we prove that W(k + i, r) = W(k − 1, r) for all k ⩾ 2, i ⩾ 0 and 3 ⩽ r ⩽ 3k, and W(k, r) = W(1, r) for all 3 ⩽ r ⩽ 6 and k ⩾ 2. We also noticed that some of these properties may be used for computational purposes related to congruences given above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Brun, J. O. Stubban, J. E. Fjelstad, R. Tambs Lyche, K. E. Aubert, W. Ljunggren, E. Jacobsthal: On the divisibility of the difference between two binomial coefficients. 11. Skand. Mat.-Kongr., Trondheim 1949 (1952), 42–54.

    Google Scholar 

  2. J. W. L. Glaisher: On the residues of the sums of the inverse powers of numbers in arithmetical progression. Quart. J. 32 (1900), 271–288.

    MATH  Google Scholar 

  3. A. Granville: Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers. Organic mathematics. Proceedings of the workshop, Simon Fraser University, Burnaby, Canada, December 12–14, 1995. Providence, RI: American Mathematical Society. CMS Conf. Proc. 20 (1997), 253–276 (J. Borwein et al., ed.).

    Google Scholar 

  4. G. S. Kazandzidis: Congruences on the binomial coefficients. Bull. Soc. Math. Grèce, N. Ser. 9 (1968), 1–12.

    MathSciNet  MATH  Google Scholar 

  5. E. Lucas: Sur les congruences des nombres eulériens et les coefficients différentiels des functions trigonométriques suivant un module premier. Bull. S. M. F. 6 (1878), 49–54. (In French.)

    MathSciNet  Google Scholar 

  6. R. J. McIntosh: On the converse of Wolstenholme’s Theorem. Acta Arith. 71 (1995), 381–389.

    MathSciNet  MATH  Google Scholar 

  7. R. J. McIntosh, E. L. Roettger: A search for Fibonacci-Wieferich and Wolstenholme primes. Math. Comput. 76 (2007), 2087–2094.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Meštrović: A note on the congruence \(\left( {_{md}^{nd} } \right) \equiv \left( {_m^n } \right)(\bmod q)\). Am. Math. Mon. 116 (2009), 75–77.

    Article  MATH  Google Scholar 

  9. Z.-W. Sun, D. M. Davis: Combinatorial congruences modulo prime powers. Trans. Am. Math. Soc. 359 (2007), 5525–5553.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Zhao: Bernoulli numbers, Wolstenholme’s theorem, and p 5 variations of Lucas’ theorem. J. Number Theory 123 (2007), 18–26.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romeo Meštrović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meštrović, R. A note on the congruence \(\left( {_{mp^k }^{np^k } } \right) \equiv \left( {_m^n } \right)\) (mod p r). Czech Math J 62, 59–65 (2012). https://doi.org/10.1007/s10587-012-0016-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-012-0016-7

Keywords

MSC 2012

Navigation