Skip to main content
Log in

Oxaloacetate Decreases the Infarct Size and Attenuates the Reduction in Evoked Responses after Photothrombotic Focal Ischemia in the Rat Cortex

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

A traumatic brain injury or a focal brain lesion is followed by acute excitotoxicity caused by the presence of abnormally high glutamate (Glu) levels in the cerebrospinal and interstitial fluids. It has recently been demonstrated that this excess Glu in the brain can be eliminated into the blood following the intravenous administration of oxaloacetate (OxAc), which, by scavenging the blood Glu, induces an enhanced and neuroprotective brain-to-blood Glu efflux. In this study, we subjected rats to a photothrombotic lesion and treated them after the illumination with a single 30-min-long administration of OxAc (1.2 mg/100 g, i.v.). Following induction of the lesion, we measured the infarct size and the amplitudes of the somatosensory evoked potentials (SEPs) as recorded from the skull surface. The photothrombotic lesion resulted in appreciably decreased amplitudes of the evoked potentials, but OxAc administration significantly attenuated this reduction, and also the infarct size assessed histologically. We suggest that the neuroprotective effects of OxAc are due to its blood Glu-scavenging activity, which, by increasing the brain-to-blood Glu efflux, reduces the excess Glu responsible for the anatomical and functional correlates of the ischemia, as evaluated by electrophysiological evoked potential (EP) measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Glu:

Glutamate

OxAc:

Oxaloacetate

EP:

Evoked potential

SEPs:

Somatosensory evoked potentials

SSI:

Somatosensory cortex

FJB:

Fluoro-Jade B

References

  • Back T, Hemmen T, Schuler OG (2004) Lesion evolution in cerebral ischemia. J Neurol 251:388–397. doi:10.1007/s00415-004-0399-y

    Article  PubMed  Google Scholar 

  • Baik MW, Branston NM, Bentivoglio P, Symon L (1990) The effects of experimental brain-stem ischaemia on brain-stem auditory evoked potentials in primates. Electroencephalogr Clin Neurophysiol 75:433–443. doi:10.1016/0013-4694(90)90088-2

    Article  PubMed  CAS  Google Scholar 

  • Bordi F, Pietra C, Ziviani L, Reggiani A (1997) The glycine antagonist GV150526 protects somatosensory evoked potentials and reduces the infarct area in the MCAo model of focal ischemia in the rat. Exp Neurol 145:425–433. doi:10.1006/exnr.1997.6442

    Article  PubMed  CAS  Google Scholar 

  • Bullock R, Zauner A, Woodward JJ, Myseros J, Choi SC, Ward JD, Marmarou A, Young HF (1998) Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg 89:507–518

    Article  PubMed  CAS  Google Scholar 

  • Castillo J, Davalos A, Naveiro J, Noya M (1996) Neuroexcitatory amino acids and their relation to infarct size and neurological deficit in ischemic stroke. Stroke 27:1060–1065

    PubMed  CAS  Google Scholar 

  • Castillo J, Davalos A, Noya M (1997) Progression of ischaemic stroke and excitotoxic aminoacids. Lancet 349:79–83. doi:10.1016/S0140-6736(96)04453-4

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634. doi:10.1016/0896-6273(88)90162-6

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1994) Glutamate receptors and the induction of excitotoxic neuronal death. Prog Brain Res 100:47–51. doi:10.1016/S0079-6123(08)60767-0

    Article  PubMed  CAS  Google Scholar 

  • Choi DW, Rothman SM (1990) The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 13:171–182. doi:10.1146/annurev.ne.13.030190.001131

    Article  PubMed  CAS  Google Scholar 

  • Damjanac M, Rioux Bilan A, Barrier L, Pontcharraud R, Anne C, Hugon J, Page G (2007) Fluoro-Jade B staining as useful tool to identify activated microglia and astrocytes in a mouse transgenic model of Alzheimer’s disease. Brain Res 1128:40–49. doi:10.1016/j.brainres.2006.05.050

    Article  PubMed  CAS  Google Scholar 

  • Ebisu T, Katsuta K, Fujikawa A, Aoki I, Umeda M, Naruse S, Tanaka C (2001) Early and delayed neuroprotective effects of FK506 on experimental focal ischemia quantitatively assessed by diffusion-weighted MRI. Magn Reson Imaging 19:153–160. doi:10.1016/S0730-725X(01)00233-8

    Article  PubMed  CAS  Google Scholar 

  • el-Rahman A, Hammouda MA, Fakeir A (1995) Flow cytometric evaluation of erythrocyte response to oxidant stress. Cytometry 20:19–22

    Article  PubMed  CAS  Google Scholar 

  • Farkas T, Perge J, Kis Z, Wolff JR, Toldi J (2000) Facial nerve injury-induced disinhibition in the primary motor cortices of both hemispheres. Eur J NeuroSci 12:2190–2194

    Article  PubMed  CAS  Google Scholar 

  • Farkas T, Racekova E, Kis Z, Horvath S, Burda J, Galik J, Toldi J (2003) Peripheral nerve injury influences the disinhibition induced by focal ischaemia in the rat motor cortex. Neurosci Lett 342:49–52

    Article  PubMed  CAS  Google Scholar 

  • Girotti AW, Thomas JP, Jordan JE (1985) Inhibitory effect of zinc(II) on free radical lipid peroxidation in erythrocyte membranes. J Free Radic Biol Med 1:395–401

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb M, Wang Y, Teichberg VI (2003) Blood-mediated scavenging of cerebrospinal fluid glutamate. J Neurochem 87:119–126

    Article  PubMed  CAS  Google Scholar 

  • Hodgkins PS, Wu HQ, Zielke HR, Schwarcz R (1999) 2-Oxoacids regulate kynurenic acid production in the rat brain: studies in vitro and in vivo. J Neurochem 72:643–651

    Article  PubMed  CAS  Google Scholar 

  • Kharlamov A, Uz T, Joo JY, Manev H (1996) Pharmacological characterization of apoptotic cell death in a model of photothrombotic brain injury in rats. Brain Res 734:1–9

    Article  PubMed  CAS  Google Scholar 

  • Ladds A, Branston NM, Vajda J, McGillicuddy JE, Symon L (1988) Changes in somatosensory evoked potentials following an experimental focal ischaemic lesion in thalamus. Electroencephalogr Clin Neurophysiol 71:233–240

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Branston NM, Kawauchi M, Jellinek DA, Symon L (1992) Electrical stimulation of motor cortex in experimental cortical ischaemia: pyramidal responses at C5 and the surface EMG. Electroencephalogr Clin Neurophysiol 85:209–214

    Article  PubMed  CAS  Google Scholar 

  • Lye RH, Shrewsbury-Gee J, Slater P, Latham A (1987) Rat middle cerebral artery occlusion: use of evoked potentials and tetrazolium staining to assess chronic ischaemia. J Neurosci Methods 22:133–139

    Article  PubMed  CAS  Google Scholar 

  • Mies G, Iijima T, Hossmann KA (1993) Correlation between peri-infarct DC shifts and ischaemic neuronal damage in rat. NeuroReport 4:709–711

    Article  PubMed  CAS  Google Scholar 

  • Minamide H, Onishi H, Yamashita J, Ikeda K (1994) Reversibility of transient focal cerebral ischemia evaluated by somatosensory evoked potentials in cats. Surg Neurol 42:138–147

    Article  PubMed  CAS  Google Scholar 

  • Molchanova S, Koobi P, Oja SS, Saransaari P (2004) Interstitial concentrations of amino acids in the rat striatum during global forebrain ischemia and potassium-evoked spreading depression. Neurochem Res 29:1519–1527

    Article  PubMed  CAS  Google Scholar 

  • Muller TB, Haraldseth O, Jones RA, Sebastiani G, Lindboe CF, Unsgard G, Oksendal AN (1995) Perfusion and diffusion-weighted MR imaging for in vivo evaluation of treatment with U74389G in a rat stroke model. Stroke 26:1453–1458

    PubMed  CAS  Google Scholar 

  • Nagababu E, Rifkind JM (1998) Formation of fluorescent heme degradation products during the oxidation of hemoglobin by hydrogen peroxide. Biochem Biophys Res Commun 247:592–596

    Article  PubMed  CAS  Google Scholar 

  • Nagababu E, Rifkind JM (2004) Heme degradation by reactive oxygen species. Antioxid Redox Signal 6:967–978

    PubMed  CAS  Google Scholar 

  • Nistico R, Piccirilli S, Cucchiaroni ML, Armogida M, Guatteo E, Giampa C, Fusco FR, Bernardi G, Nistico G, Mercuri NB (2008) Neuroprotective effect of hydrogen peroxide on an in vitro model of brain ischaemia. Br J Pharmacol 153:1022–1029

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, London

    Google Scholar 

  • Rozanowska M, Sarna T, Land EJ, Truscott TG (1999) Free radical scavenging properties of melanin interaction of eu- and pheo-melanin models with reducing and oxidising radicals. Free Radic Biol Med 26:518–525

    Article  PubMed  CAS  Google Scholar 

  • Scheller D, Szathmary S, Kolb J, Tegtmeier F (2000) Observations on the relationship between the extracellular changes of taurine and glutamate during cortical spreading depression, during ischemia, and within the area surrounding a thrombotic infarct. Amino Acids 19:571–583

    Article  PubMed  CAS  Google Scholar 

  • Shaw PJ, Forrest V, Ince PG, Richardson JP, Wastell HJ (1995) CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegeneration 4:209–216

    Article  PubMed  CAS  Google Scholar 

  • Spreux-Varoquaux O, Bensimon G, Lacomblez L, Salachas F, Pradat PF, Le Forestier N, Marouan A, Dib M, Meininger V (2002) Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. J Neurol Sci 193:73–78

    Article  PubMed  CAS  Google Scholar 

  • Stieg PE, Sathi S, Warach S, Le DA, Lipton SA (1999) Neuroprotection by the NMDA receptor-associated open-channel blocker memantine in a photothrombotic model of cerebral focal ischemia in neonatal rat. Eur J Pharmacol 375:115–120

    Article  PubMed  CAS  Google Scholar 

  • Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45:309–379

    PubMed  CAS  Google Scholar 

  • Teichberg VI, Cohen-Kashi-Malina K, Cooper I, Zlotnik A (2009) Homeostasis of glutamate in brain fluids: an accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies. Neuroscience. 158(1):301–308

    Article  PubMed  CAS  Google Scholar 

  • Toldi J, Farkas T, Perge J, Wolff JR (1999) Facial nerve injury produces a latent somatosensory input through recruitment of the motor cortex in the rat. NeuroReport 10:2143–2147

    Article  PubMed  CAS  Google Scholar 

  • Traystman RJ, Kirsch JR, Koehler RC (1991) Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J Appl Physiol 71:1185–1195

    PubMed  CAS  Google Scholar 

  • Umemura K, Shimakura A, Nakashima M (1997) Neuroprotective effect of a novel AMPA receptor antagonist, YM90 K, in rat focal cerebral ischaemia. Brain Res 773:61–65

    Article  PubMed  CAS  Google Scholar 

  • Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD (1985) Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol 17:497–504

    Article  PubMed  CAS  Google Scholar 

  • Wright A, Hawkins CL, Davies MJ (2003) Photo-oxidation of cells generates long-lived intracellular protein peroxides. Free Radic Biol Med 34:637–647

    Article  PubMed  CAS  Google Scholar 

  • Zlotnik A, Gurevich B, Tkachov S, Maoz I, Shapira Y, Teichberg VI (2007) Brain neuroprotection by scavenging blood glutamate. Exp Neurol 203:213–220

    Article  PubMed  CAS  Google Scholar 

  • Zlotnik A, Gurevich B, Cherniavsky E, Tkachov S, Matuzani-Ruban A, Leon A, Shapira Y, Teichberg VI (2008) The contribution of the blood glutamate scavenging activity of pyruvate to its neuroprotective properties in a rat model of closed head injury. Neurochem Res 33:1044–1050

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Bureau of Research and Development (NKTH RET 08/2004), OTKA K75628, TéT SK-26/200, and GVOP-3.2.1-2004-04-0357/3.0. T.F. is a Bolyai Fellow of the Hungarian Academy of Sciences. V.I.T has received support from the Weizmann Institute Nella and Leon Benoziyo Center for Neurological Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozsef Toldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, D., Marosi, M., Kis, Z. et al. Oxaloacetate Decreases the Infarct Size and Attenuates the Reduction in Evoked Responses after Photothrombotic Focal Ischemia in the Rat Cortex. Cell Mol Neurobiol 29, 827–835 (2009). https://doi.org/10.1007/s10571-009-9364-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-009-9364-8

Keywords

Navigation