Skip to main content
Log in

Propagation of large uncertainty sets in orbital dynamics by automatic domain splitting

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Current approaches to uncertainty propagation in astrodynamics mainly refer to linearized models or Monte Carlo simulations. Naive linear methods fail in nonlinear dynamics, whereas Monte Carlo simulations tend to be computationally intensive. Differential algebra has already proven to be an efficient compromise by replacing thousands of pointwise integrations of Monte Carlo runs with the fast evaluation of the arbitrary order Taylor expansion of the flow of the dynamics. However, the current implementation of the DA-based high-order uncertainty propagator fails when the non-linearities of the dynamics prohibit good convergence of the Taylor expansion in one or more directions. We solve this issue by introducing automatic domain splitting. During propagation, the polynomial expansion of the current state is split into two polynomials whenever its truncation error reaches a predefined threshold. The resulting set of polynomials accurately tracks uncertainties, even in highly nonlinear dynamics. The method is tested on the propagation of (99942) Apophis post-encounter motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alessi, E.M., Farres, A., Vieiro, A., Jorba, A., and Simo, C.: Jet Transport and Applications to NEOs. In: Proceedings of the 1st IAA Planetary Defense Conference, Granada, Spain (2009)

  • Armellin, R., Di Lizia, P., Bernelli-Zazzera, F., Berz, M.: Asteroid close encounters characterization using differential algebra: the case of Apophis. Celest. Mech. Dyn. Astron. 107, 451–470 (2010)

    Article  MATH  ADS  Google Scholar 

  • Battin, H.R.: An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series, Reston (1999)

    Book  MATH  Google Scholar 

  • Berz, M.: The new method of TPSA algebra for the description of beam dynamics to high orders. Technical report AT-6:ATN-86-16, Los Alamos National Laboratory (1986)

  • Berz, M.: The method of power series tracking for the mathematical description of beam dynamics. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detectors Assoc Equip. A258, 431–436 (1987)

    Article  ADS  Google Scholar 

  • Berz, M.: Modern Map Methods in Particle Beam Physics. Academic press, New York (1999a)

    Google Scholar 

  • Berz, M.: Differential Algebraic Techniques. Entry in Handbook of Accelerator Physics and Engineering. World Scientific, New York (1999b)

    Google Scholar 

  • Berz, M., Makino, K.: COSY INFINITY Version 9 Reference Manual. MSU report MSUHEP-060803, Michigan State University, East Lansing, MI 48824, 1–84 (2006)

  • Bignon, E., Pinède, R., Azzopardi, V., Mercier, P.: JACK: an accurate Numerical Orbit Propagator using Taylor Differential Algebra Emmanuel. KePASSA workshop, Logroño, Spain, April 23–25, (2014)

  • Crassidis, J.L., Junkins, J.L.: Optimal Estimation of Dynamic Systems. CRC Press, Boca Raton (2004)

    Book  MATH  Google Scholar 

  • Di Lizia, P., Armellin, R., Lavagna, M.: Application of high order expansions of two-point boundary value problems to astrodynamics. Celest. Mech. Dyn. Astron. 102, 355–375 (2008)

    Article  MATH  ADS  Google Scholar 

  • Di Lizia, P., Armellin, R., Bernelli Zazzera, F., Jagasia, R., Makino, K., Berz, M.: Validated Integration of Solar System Dynamics. In: Proceedings of the 1st IAA Planetary Defense Conference, Granada, Spain (2009)

  • Giorgini, J.D., Benner, L.A., Ostro, S.J., Nolan, M.C., Busch, M.W.: Predicting the Earth encounters of (99942) Apophis. Icarus 193, 1–19 (2008)

    Article  ADS  Google Scholar 

  • Giza, D.R., Singla, P., Jah, M.: An approach for nonlinear uncertainty propagation: Application to orbital mechanics. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, Chicago, Illinois (2009)

  • Horwood, J.T., Poore, A.B.: Adaptive Gaussian sum filters for space surveillance. IEEE Trans. Automatic Control 56, 1777–1790 (2011)

    Article  MathSciNet  Google Scholar 

  • Jah, M., Kelecy, T. M.: Orbit Determination Performance Improvements for High Area-to-Mass Ratio Space Object Tracking Using an Adaptive Gaussian Mixtures Estimation Algorithm. In: Proceedings of the 60th International Astronautical Congress, Daejeon, Republic of Korea (2009)

  • Julier, S.J., Uhlmann, J.K.: Unscented filtering and nonlinear estimation. Proc IEEE 92, 401–422 (2004)

  • Julier, S.J.: The scaled unscented transformation. In: Proceedings of the American Control Conference, Piscataway, New Jersey (2002)

  • Makino, K., Berz, M.: Rigorous Integration of Flows and ODEs using Taylor Models. In: Proceedings of the 2009 conference on Symbolic Numeric Computation, pp. 79–84 (2009)

  • Majji, M., Junkins, J.L., Turner, J.D.: A high order method for estimation of dynamic systems. J. Astronaut. Sci. 56, 1–32 (2008)

    Article  Google Scholar 

  • Maybeck, P.S.: Stochastic Models, Estimation and Control. Academic press, New York (1982)

    MATH  Google Scholar 

  • Montenbruck, O., Eberhard, G.: Satellite orbits. Springer, New York (2001)

    Google Scholar 

  • Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    Book  MATH  Google Scholar 

  • Morselli, A., Armellin, R., Di Lizia, P., and Bernelli-Zazzera, F.: Computing Collision Probability Using Differential Algebra and Advanced Monte Carlo Methods. In: Proceedings of the 63rd International Astronautical Congress, Napoli, Italy (2010)

  • Park, R.S., Scheeres, D.J.: Nonlinear mapping of Gaussian statistics: theory and applications to spacecraft trajectory design. J. Guidance Control Dyn. 29, 1367–1375 (2006)

    Article  ADS  Google Scholar 

  • Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill Inc., New York (1976)

    MATH  Google Scholar 

  • Seidelmann, P.K.: Explanatory Supplement to the Astronomical Almanac. University Science Books, Sausalito, CA (1992)

    Google Scholar 

  • Valli, M., Armellin, R., Di Lizia, P., Lavagna, M.: Nonlinear Mapping of Uncertainties in Celestial Mechanics. J. Guidance Control Dyn. 36, 48–63 (2012)

    Article  ADS  Google Scholar 

  • Valsecchi, G., Milani, A., Rossi, A., Tommei, G.: The SRT, Near-Earth objects, and space debris. Memorie della Societa Astronomica Italiana Supplementi 10, 186 (2006)

    ADS  Google Scholar 

  • Vittaldev, V., Russell, R.P., Arora, N., Gaylor, D.: Second-order Kalman filters using multi-complex step derivatives. In: Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, Kauai, Hawaii (2012)

Download references

Acknowledgments

A. Wittig gratefully acknowledges the support received by the EU Marie Curie fellowship from the initial training network PITN-GA 2011-289240 (AstroNet-II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Wittig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wittig, A., Di Lizia, P., Armellin, R. et al. Propagation of large uncertainty sets in orbital dynamics by automatic domain splitting. Celest Mech Dyn Astr 122, 239–261 (2015). https://doi.org/10.1007/s10569-015-9618-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-015-9618-3

Keywords

Navigation