Skip to main content
Log in

Radially accelerated optimal feedback orbits in central gravity field with linear drag

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The solution of a feedback optimal control problem arising in orbital mechanics is addressed in this paper. The dynamics is that of a massless body moving in a central gravitational force field subject also to a drag and a radial modulated force. The drag is linearly proportional to the velocity and inversely proportional to the square of the distance from the center of attraction. The problem is tackled by exploiting the properties of a suitably devised linearizing map that transforms the nonlinear dynamics into an inhomogeneous linear system of differential equations supplemented by a quadratic objective function. The generating function method is then applied to this new system, and the solution is back transformed in the old variables. The proposed technique, in contrast to the classical optimal control problem, allows us to derive analytic closed-loop solutions without solving any two-point boundary value problem. Applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal S., Faiz N.: Optimization of a class of nonlinear dynamic systems: new efficient method without Lagrange multipliers. J. Optim. Theory Appl. 97, 11–28 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Battin R.: An Introduction to the Mathematics and Methods of Astrodynamics, pp. 408–415. AIAA, New York (1987)

    MATH  Google Scholar 

  • Beeler S.C., Banks H.T.: Feedback control methodology for nonlinear systems. J. Optim. Theory Appl. 107, 1–33 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Bonnard B., Caillau J.B., Trelat E.: Geometric optimal control of elliptic Keplerian orbits. J. Discret. Contin. Dyn. Syst. B 5, 929–956 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Breiter S., Jackson A.: Unified analytical solutions to two-body problems with drag. Mon. Not. R. Astron. Soc. 299, 237–243 (1998)

    Article  ADS  Google Scholar 

  • Bryson A.E., Ho Y.C.: Applied Optimal Control, pp. 87–89. Hemisphere, Washington (1975)

    Google Scholar 

  • Carter T., Humi M.: Fuel optimal rendezvous near a point in general Keplerian orbit. J. Guid. Control Dyn. 10, 567–573 (1987)

    Article  MATH  ADS  Google Scholar 

  • Ferraz-Mello S.: Averaging the elliptic asteroidal problem with a Stokes drag. In: Benest, D., Froeschlé, C. (eds) Interrelations Between Physics and Dynamics for Minor Bodies in the Solar System, Editions Frontieres, Gif-sur-Yvette, France (1992)

    Google Scholar 

  • Frederick B.W.: Orbital motion under continuous radial thrust. J. Guid. Control Dyn. 14, 1179–1188 (1991)

    Google Scholar 

  • Giaquinta M., Hildebrandt S.: Calculus of Variations, pp. 155–156. Springer, New York (1996)

    Google Scholar 

  • Gurfil P.: Nonlinear feedback control of low-thrust orbital transfer in a central gravitational field. Acta Astronaut. 60, 631–648 (2007)

    Article  ADS  Google Scholar 

  • Humi M., Carter T.: Rendezvous equations in a central-force field with linear drag. J. Guid. Control Dyn. 25, 74–79 (2002a)

    Article  Google Scholar 

  • Humi M., Carter T.: Models of motion in a central foreced field with quadratic drag. J. Celest. Mech. Dyn. Astron. 84, 245–262 (2002b)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Katzin G., Levine J.: Time dependent vector constants of motion, symmetries and orbit equation for the dynamical system of two-body motion. J. Math. Phys. 24, 1761–1771 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Leach P.: The first integrals and orbit equation for the Kepler problem with drag. J. Phys. A Gen. Phys. 20, 1997–2002 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • McInnes C.: Orbits in a generalized two-body problem. J. Guid. Control Dyn. 26, 743–749 (2003)

    Article  Google Scholar 

  • Mittleman D., Jezewski D.: An analytic solution to the class of 2-body motion with drag. Celest. Mech. 28, 401–413 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Park C., Scheeres D.J.: Solutions of optimal feedback control problems with general boundary conditions using Hamiltonian dynamics and generating functions. Automatica 42, 869–875 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Park C., Guibout V., Scheeres D.: Solving optimal continuous thrust rendezvous problems with generating functions. J. Guid. Control Dyn. 29, 321–331 (2006)

    Article  Google Scholar 

  • Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F.: The Mathematical Theory of Optimal Processes, pp. 17–21. Wiley, New York (1962)

    MATH  Google Scholar 

  • Prussing J., Coverstone-Carroll V.L.: Constant radial thrust acceleration redux. J Guid. Control Dyn. 21, 516–518 (1998)

    Article  Google Scholar 

  • Trask A.J., Mason W.J., Coverstone V.L.: Optimal interplanetary trajectories using constant radial thrust and gravity assist. J. Guid. Control Dyn. 27, 503–506 (2004)

    Article  Google Scholar 

  • Yamakawa H.: Optimal radially accelerated interplanetary trajectories. J. Spacecr. Rockets 43, 116–120 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Owis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owis, A., Topputo, F. & Bernelli-Zazzera, F. Radially accelerated optimal feedback orbits in central gravity field with linear drag. Celest Mech Dyn Astr 103, 1–16 (2009). https://doi.org/10.1007/s10569-008-9161-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-008-9161-6

Keywords

Navigation