Skip to main content
Log in

Study of Oxygen Reactivity in La1−x Sr x CoO3−δ Perovskites for Total Oxidation of Toluene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The total oxidation of toluene is studied over catalytic systems based on perovskite with general formula AA′CoO3-δ (A = La, A′ = Sr). The systematic and progressive substitution of La3+ by Sr2+ cations in the series (La1−x Sr x CoO3−δ system) of the perovskites have been studied to determine their influence in the final properties of these mixed oxides and their corresponding reactivity performance for the total oxidation of toluene as a model volatile organic compound with detrimental effects for health and environment. The structure and morphology of the samples before and after reaction have been characterized by XRD, BET and FE-SEM techniques. Additional experiments of temperature programmed desorption of O2 in vacuum and reduction in H2 were also performed to identify the main surface oxygen species and the reducibility of the different perovskites. It is remarkable that the La1−x Sr x CoO3−δ series presents better catalytic performance for the oxidation of toluene, with lower values for the T50 (temperature of 50 % toluene conversion) than the previously studied LaNi1−y Co y O3 series.

Graphical abstract

The substitution of La3+ by Sr2+ (La1−x Sr x CoO3−δ) have been studied to determine the influence in the final structure of these mixed oxides and their reactivity toward the deep oxidation of toluene, where the α-types oxygen species may play an activerole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bialobok B, Trawczynski J, Mista W, Zawadzki M (2007) Appl Catal B Environ 72:395

    Article  CAS  Google Scholar 

  2. Rodrigues ACC (2007) Catal Commun 8:1227

    Article  CAS  Google Scholar 

  3. Spinicci R, Tofanari A, Faticanti M, Pettiti I, Porta P (2001) J Mol Catal A Chem 176:247

    Article  CAS  Google Scholar 

  4. Spivey JJ (1987) Ind Eng Chem Res 26:2165

    Article  CAS  Google Scholar 

  5. Chang C, Weng HS (1993) Ind Eng Chem Res 32:2930

    Article  CAS  Google Scholar 

  6. Alifanti M, Florea M, Somacescu S, Parvulescu VI (2005) Appl Catal B Environ 60:33

    Article  CAS  Google Scholar 

  7. Irusta S, Pina MP, Menendez M, Santamaria J (1998) J Catal 179:400

    Article  CAS  Google Scholar 

  8. Okumura K, Kobayashi T, Tanaka H, Niwa M (2003) Appl Catal B Environ 44:325

    Article  CAS  Google Scholar 

  9. Kubacka A, Fuerte A, Martinez-Arias A, Fernandez-Garcia M (2007) Appl Catal B Environ 74:26

    Article  CAS  Google Scholar 

  10. Todorova S, Kadinov G, Tenchev K, Caballero A, Holgado JP, Pereñiguez R (2009) Catal Lett 129:149

    Article  CAS  Google Scholar 

  11. Todorova S, Naydenov A, Kolev H, Holgado J P, Ivanov G, Kadinov G, Caballero A (2012) Appl Catal A Gen 413–414:43

    Article  Google Scholar 

  12. Hueso JL, Caballero A, Ocaña M, González-Elipe AR (2008) J Catal 257:334

    Article  CAS  Google Scholar 

  13. Nakamura T, Misono M, Yoneda Y (1982) Bull Chem Soc Jpn 55:394

    Article  CAS  Google Scholar 

  14. Tejuca LG, Fierro JLG (1993) Properties and applications of perovskite-type oxides, vol 1. Marcel Dekker, New York

    Google Scholar 

  15. Pereñíguez R, Hueso JL, Holgado JP, Gaillard F, Caballero A (2009) Catal Lett 131:347

    Article  Google Scholar 

  16. Peña MA, Fierro JLG (2001) Chem Rev 101:1981

    Article  Google Scholar 

  17. Nakamura T, Misono M, Yoneda Y (1981) Chem Lett 10:1589

    Article  Google Scholar 

  18. Agarwal DD, Goswami HS (1994) React Kinet Catal Lett 53:441

    Article  CAS  Google Scholar 

  19. Liang JJ, Weng HS (1993) Ind Eng Chem Res 32:2563

    Article  CAS  Google Scholar 

  20. Deng JG, Zhang L, Dai HX, He H, Au CT (2008) Ind Eng Chem Res 47:8175

    Article  CAS  Google Scholar 

  21. Li N, Boreave A, Deloume JP, Gaillard F (2008) Solid State Ion 179:1396

    Article  CAS  Google Scholar 

  22. Rousseau S, Loridant S, Delichere P, Boreave A, Deloume JP, Vernoux P (2009) Appl Catal B Environ 88:438

    Article  CAS  Google Scholar 

  23. Blasin-Aube V, Belkouch J, Monceaux L (2003) Appl Catal B Environ 43:175

    Article  CAS  Google Scholar 

  24. Alifanti M, Florea M, Parvulescu VI (2007) Appl Catal B Environ 70:400

    Article  CAS  Google Scholar 

  25. López-Navarrete E, Caballero A, Orera VM, Lázaro FJ, Ocaña M (2003) Acta Mater 51:2371

    Article  Google Scholar 

  26. Malet P, Caballero A (1988) J Chem Soc Faraday Trans 84:2369

    Article  CAS  Google Scholar 

  27. Gaillard F, Joly JP, Perrard A (2007) Adsorpt Sci Technol 25:245

    Article  CAS  Google Scholar 

  28. Gaillard F, Joly JP, Boreave A, Vernoux P, Deloume JP (2007) Appl Surf Sci 253:5876

    Article  CAS  Google Scholar 

  29. Gaillard F, Joly JP, Li N, Boreave A, Deloume JP (2008) Solid State Ion 179:941

    Article  CAS  Google Scholar 

  30. Merino NA, Barbero BP, Grange P, Cadus LE (2005) J Catal 231:232

    Article  CAS  Google Scholar 

  31. Royer S, Berube F, Kaliaguine S (2005) Appl Catal A Gen 282:273

    Article  CAS  Google Scholar 

  32. Jimenez VM, Espinos JP, Gonzalez-Elipe AR (1998) Surf Interface Anal 26:62

    Article  CAS  Google Scholar 

  33. Jimenez VM, Fernandez A, Espinos JP, Gonzalezelipe AR (1995) J Electron Spectrosc Relat Phenom 71:61

    Article  CAS  Google Scholar 

  34. Royer S, Alamdari H, Duprez D, Kaliaguine S (2005) Appl Catal B Environ 58:273

    Article  CAS  Google Scholar 

  35. Hueso JL, Holgado JP, Pereñíguez R, Mun S, Salmeron M, Caballero A (2010) J Solid State Chem 183:27

    Article  CAS  Google Scholar 

  36. Espinós JP, Gonzalez-Elipe AR, Caballero A, García J, Munuera G (1992) J Catal 136:415

    Article  Google Scholar 

  37. Pereñíguez R, González-DelaCruz VM, Caballero A, Holgado JP (2010) Appl Catal B Environ 93:346

    Article  Google Scholar 

  38. Hueso JL, Martínez-Martínez D, Caballero A, González-Elipe AR, Mun S, Salmerón M (2009) Catal Commun 10:1898

    Article  CAS  Google Scholar 

  39. Giraudon JM, Elhachimi A, Wyrwalski F, Siffert S, Aboukais A, Lamonier JF, Leclercq G (2007) Appl Catal B Environ 75:157

    Article  CAS  Google Scholar 

  40. Sierra Gallego G, Batiot-Dupeyrat C, Barrault J, Florez E, Mondragón F (2008) Appl Catal A Gen 334:251

    Article  Google Scholar 

  41. Vaz T, Salker AV (2007) Mater Sci Eng B Adv Funct Solid State Mater 143:81

    CAS  Google Scholar 

  42. González-DelaCruz VM, Holgado JP, Pereñíguez R, Caballero A (2008) J Catal 257:307

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Ministry of Science and Education of Spain for financial support (Projects ENE2004-01660 and ENE2007-67926-C02-01) and a PhD fellowship for R.P.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Pereñíguez or A. Caballero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereñíguez, R., Hueso, J.L., Gaillard, F. et al. Study of Oxygen Reactivity in La1−x Sr x CoO3−δ Perovskites for Total Oxidation of Toluene. Catal Lett 142, 408–416 (2012). https://doi.org/10.1007/s10562-012-0799-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0799-z

Keywords

Navigation