Skip to main content

Advertisement

Log in

Chemistry in the Center for Catalytic Hydrocarbon Functionalization: An Energy Frontier Research Center

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Selective catalysts that activate small molecules such as hydrocarbons, dioxygen, water, carbon dioxide and dihydrogen are central to new technologies for the use of alternative energy sources. For example, controlled hydrocarbon functionalization can lead to high impact technologies, but such catalysts require a level of molecular control beyond current means. The Center for Catalytic Hydrocarbon Functionalization facilitates collaborations among research groups in catalysis, materials, electrochemistry, bioinorganic chemistry and quantum mechanics to develop, validate and optimize new methods to rearrange the bonds of hydrocarbons, activate and transform water and carbon dioxide, implement enzymatic strategies into synthetic systems and design optimal environments for catalysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Fig. 2

Similar content being viewed by others

References

  1. Energy Information Administration (2008) Annual energy review

  2. Basic Energy Sciences Advisory Committee (2003) Basic research needs to assure a secure energy future

  3. Energy Information Administration (2009) International energy statistics

  4. Energy information administration voluntary reporting of greenhouse gases program: fuel and energy source codes and emission coefficients (2008)

  5. Energy Information Administration (2010) International energy outlook

  6. Gol’dshleger NF, Es’kova VV, Shilov AE, Shteinman AA (1972) Zh Fiz Khim 46:1353

    Google Scholar 

  7. Labinger JA, Bercaw JE (2002) Nature 417:507

    CAS  Google Scholar 

  8. Groves JT (1985) J Chem Educ 62:928

    CAS  Google Scholar 

  9. John Groves T (2004) In: De Montellano PRO (ed) Cytochrome P450: structure mechanism and biochemistry. Kluwer Academic, New York

    Google Scholar 

  10. Bell SR, Groves JT (2009) J Am Chem Soc 131:9640

    CAS  Google Scholar 

  11. Periana RA, Taube DJ, Gamble S, Taube H, Satoh T, Fujii H (1998) Science 280:560

    CAS  Google Scholar 

  12. Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA, Domen K, Du Bois DL, Eckert J, Fujita E, Gibson DH, Goddard WA III, Goodman DW, Keller J, Kubas GJ, Kung HH, Lyons JE, Manzer LE, Marks TJ, Morokuma K, Nicholas KM, Periana RA, Que L, Rostrup-Nielson J, Sachtler WMH, Schmidt LD, Sen A, Somorjai GA, Stair PC, Stults BR, Tumas W (2001) Chem Rev 101:953

    CAS  Google Scholar 

  13. Vedernikov AN, Binfield SA, Zavalij PY, Khusnutdinova JR (2006) J Am Chem Soc 128:82

    CAS  Google Scholar 

  14. Vedernikov AN (2009) Chem Commun 4781

  15. Feng Y, Lail M, Barakat KA, Cundari TR, Gunnoe TB, Petersen JL (2005) J Am Chem Soc 127:14174

    CAS  Google Scholar 

  16. Feng Y, Lail M, Foley NA, Gunnoe TB, Barakat KA, Cundari TR, Petersen JL (2006) J Am Chem Soc 128:7982

    CAS  Google Scholar 

  17. Tenn WJ III, Young KJH, Bhalla G, Oxgaard J, Goddard WA III, Periana RA (2005) J Am Chem Soc 127:14172

    CAS  Google Scholar 

  18. Bercaw JE, Hazari N, Labinger JA (2009) Organometallics 28:5489

    CAS  Google Scholar 

  19. Kloek SM, Heinekey DM, Goldberg KI (2007) Angew Chem Int Ed 46:4736

    CAS  Google Scholar 

  20. Hanson SK, Heinekey DM, Goldberg KI (2008) Organometallics 27:1454

    CAS  Google Scholar 

  21. Conley BL, Ganesh SK, Gonzales JM, Tenn WJ III, Young KJH, Oxgaard J, Goddard WA III, Periana RA (2006) J Am Chem Soc 128:9018

    CAS  Google Scholar 

  22. Gonzales JM, Distasio R Jr, Periana RA, Goddard WA III, Oxgaard J (2007) J Am Chem Soc 129:15794

    CAS  Google Scholar 

  23. Conley BL, Ganesh SK, Gonzales JM, Ess DH, Nielsen RJ, Ziatdinov VR, Oxgaard J, Goddard WA III, Periana RA (2008) Angew Chem Int Ed 47:7849

    CAS  Google Scholar 

  24. Concepcion JJ, Jurss JW, Templeton JL, Meyer TJ (2008) J Am Chem Soc 130:16462

    CAS  Google Scholar 

  25. Chen Z, Concepcion JJ, Jurss JW, Meyer TJ (2009) J Am Chem Soc 131:15580

    CAS  Google Scholar 

  26. Concepcion JJ, Tsai M, Muckerman JT, Meyer TJ (2010) J Am Chem Soc 132:1545

    CAS  Google Scholar 

  27. Chen Z, Concepcion JJ, Hull JF, Hoertz PG, Meyer TJ (2010) Dalton Trans 39:6950

    CAS  Google Scholar 

  28. Zhou M, Schley ND, Crabtree RH (2010) J Am Chem Soc 132:12550

    CAS  Google Scholar 

  29. Jin N, Ibrahim M, Spiro TG, Groves JT (2007) J Am Chem Soc 129:12416

    CAS  Google Scholar 

  30. Liu W, Groves JT (2010) J Am Chem Soc 132:12847

    CAS  Google Scholar 

  31. Cummins CC, Baxter SM, Wolczanski PT (1988) J Am Chem Soc 110:8731

    CAS  Google Scholar 

  32. Walsh PJ, Hollander FJ, Bergman RG (1988) J Am Chem Soc 110:8729

    CAS  Google Scholar 

  33. Cundari TR (1993) Organometallics 12:4971

    CAS  Google Scholar 

  34. Cundari TR (1994) Organometallics 13:2987

    CAS  Google Scholar 

  35. Lee SY, Bergman RG (1995) J Am Chem Soc 117:5877

    CAS  Google Scholar 

  36. Bennett JL, Wolczanski PT (1997) J Am Chem Soc 119:10696

    CAS  Google Scholar 

  37. Polse JL, Andersen RA, Bergman RG (1998) J Am Chem Soc 120:13405

    CAS  Google Scholar 

  38. Blake REJ, Antonelli DM, Henling LM, Schaefer WP, Hardcastle KI, Bercaw JE (1998) Organometallics 17:718

    CAS  Google Scholar 

  39. Cundari TR, Klinckman TR, Wolczanski PT (2002) J Am Chem Soc 124:1481

    CAS  Google Scholar 

  40. Hoyt HM, Michael FE, Bergman RG (2004) J Am Chem Soc 126:1018

    CAS  Google Scholar 

  41. Cundari TR, Pierpont AW, Rabaa H (2006) Int J Quantum Chem 106:1611

    CAS  Google Scholar 

  42. Huh S, Chen H, Wiench JW, Pruski M, Lin VSY (2004) J Am Chem Soc 126:1010

    CAS  Google Scholar 

  43. Rapp JL, Huang Y, Natella M, Cai Y, Lin VSY, Pruski M (2009) Solid State Nucl Magn Reson 35:82

    CAS  Google Scholar 

  44. Szajna-Fuller E, Huang Y, Rapp JL, Chaka G, Lin VSY, Pruski M, Bakac A (2009) Dalton Trans 3237

  45. Cheng M, Chenoweth K, Oxgaard J, Van Duin A, Goddard WA III (2007) J Phys Chem C 111:5115

    CAS  Google Scholar 

  46. Goddard WA III, Duin A, Chenoweth K, Cheng M, Pudar S, Oxgaard J, Merinov B, Jang YH, Persson P (2006) Top Catal 38:93

    CAS  Google Scholar 

  47. Allison JN, Goddard WA III (1985) ACS Symp Ser 279:23

    CAS  Google Scholar 

  48. Pudar S, Oxgaard J, Chenoweth K, Van Duin ACT, Goddard WA III (2007) J Phys Chem C 111:16405

    CAS  Google Scholar 

  49. Jang YH, Goddard WA III (2002) J Phys Chem B 106:5997

    CAS  Google Scholar 

  50. Goddard WA III, Chenoweth K, Pudar S, Duin ACT, Cheng M (2008) Top Catal 50:2

    CAS  Google Scholar 

  51. Pudar S, Oxgaard J, Goddard WA III (2010) J Phys Chem C 114:15678

    CAS  Google Scholar 

  52. Energy Information Administration (2010) Electric power monthly

Download references

Acknowledgment

This publication is based upon work supported as part of the Center for Catalytic Hydrocarbon Functionalization, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001298.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Brent Gunnoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golisz, S.R., Brent Gunnoe, T., Goddard, W.A. et al. Chemistry in the Center for Catalytic Hydrocarbon Functionalization: An Energy Frontier Research Center. Catal Lett 141, 213–221 (2011). https://doi.org/10.1007/s10562-010-0499-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0499-5

Keywords

Navigation