Skip to main content
Log in

Formation of Similarity-Reflecting Binary Vectors with Random Binary Projections

  • NEW MEANS OF CYBERNETICS, INFORMATICS, COMPUTER ENGINEERING, AND SYSTEMS ANALYSIS
  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

We propose a transformation of real input vectors to output binary vectors by projection using a binary random matrix with elements {0,1} and thresholding. We investigate the rate of convergence of the distribution of vector components before binarization to the Gaussian distribution as well as its relationship to the estimation error of the angle between the input vectors by the binarized output vectors. It is shown that for the choice of projection parameters that provide nearly-Gaussian distribution, the experimental and analytical errors are close.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Rachkovskij and S. V. Slipchenko, “Similarity-based retrieval with structure-sensitive sparse binary distributed representations,” Computational Intelligence, 28, No. 1, 106–129 (2012).

    Article  MathSciNet  Google Scholar 

  2. A. M. Reznik, A. A. Galinskaya, O. K. Dekhtyarenko, and D. W. Nowicki, “Preprocessing of matrix QCM sensors data for the classification by means of neural network,” Sensors and Actuators, B, 106, 158–163 (2005).

    Article  Google Scholar 

  3. A. A. Frolov, D. Husek, and P. Yu. Polyakov, “Recurrent-neural-network-based Boolean factor analysis and its application to word clustering,” IEEE Trans. on Neural Networks, 20, No. 7, 1073–1086 (2009).

    Article  Google Scholar 

  4. V. I. Gritsenko, D. A. Rachkovskij, A. D. Goltsev, V. V. Lukovych, I. S. Misuno, E. G. Revunova, S. V. Slipchenko, A. M. Sokolov, and S. A. Talayev, “Neural distributed representation for intelligent information technologies and modeling of thinking,” Cybernetics and Computer Engineering., 173, 7–24 (2013).

    Google Scholar 

  5. S. V. Slipchenko and D. A. Rachkovskij, “Analogical mapping using similarity of binary distributed representations,” Intern. J. Inform. Theories and Appl., 16, No. 3, 269–290 (2009).

    Google Scholar 

  6. I. S. Misuno, D. A. Rachkovskij, and S. V. Slipchenko, “Vector and distributed representations reflecting semantic relatedness of words,” Mathematical Machines and Systems, No. 3, 50–67 (2005).

    Google Scholar 

  7. A. Sokolov, “LIMSI: learning semantic similarity by selecting random word subsets,” in: Proc. of 6th Intern. Workshop on Semantic Evaluation (SEMEVAL’12), Montreal (Canada), Association for Computational Linguistics (2012), pp. 543–546.

  8. A. Sokolov and S. Riezler, “Task-driven greedy learning of feature hashing functions,” in: Proc. NIPS’13 Workshop “Big Learning: Advances in Algorithms and Data Management”, Lake Tahoe (USA) (2013), pp. 1–5.

  9. E. M. Kussul and D. A. Rachkovskij, “Multilevel assembly neural architecture and processing of sequences,” in: A. V. Holden and V. I. Kryukov (eds.), Neurocomputers and Attention: Vol. II. Connectionism and Neurocomputers, Manchester Univ. Press, Manchester–New York (1991), pp. 577–590.

  10. P. Kanerva, G. Sjodin, J. Kristoferson, R. Karlsson, B. Levin, A. Holst, J. Karlgren, and M. Sahlgren, “Computing with large random patterns,” in: Foundations of Real-World Intelligence, CSLI Publ., Stanford (Calif.) (2001), pp. 251–311.

  11. D. A. Rachkovskij, “Representation and processing of structures with binary sparse distributed codes,” IEEE Trans. on Knowledge and Data Engineering, 13, No. 2, 261–276 (2001).

    Article  Google Scholar 

  12. D. A. Rachkovskij, S. V. Slipchenko, E. M. Kussul, and T. N. Baidyk, “Binding procedure for distributed binary data representations,” Cybern. Syst. Analysis, 41, No. 3, 319–331 (2005).

    Article  Google Scholar 

  13. A. Letichevsky, A. Letychevsky Jr., and V. Peschanenko, “Insertion modeling system,” Lecture Notes in Computer Science, 7162, 262–274 (2011).

    Article  Google Scholar 

  14. A. Letichevsky, A. Godlevsky, A. Letichevsky Jr., S. Potienko, and V. Peschanenko, “The properties of predicate transformer in VRS system,” Cybern. Syst. Analysis, 46, No. 4, 521–532 (2010).

    Article  MATH  Google Scholar 

  15. S. I. Gallant and T. W. Okaywe, “Representing objects, relations, and sequences,” Neural Computation, 25, No. 8, 2038–2078 (2013).

    Article  MathSciNet  Google Scholar 

  16. D. A. Rachkovskij, “Some approaches to analogical mapping with structure sensitive distributed representations,” J. of Experimental and Theoretical Artificial Intelligence, 16, No. 3, 125–145 (2004).

    Article  MATH  Google Scholar 

  17. B. Emruli, R. W. Gayler, and F. Sandin, “Analogical mapping and inference with binary spatter codes and sparse distributed memory,” Intern. Joint Conf. on Neural Networks (IJCNN), 4–9 Aug 2013, Dallas, TX, IEEE (2013), pp. 1–8.

  18. N. Kussul, A. Shelestov, S. Skakun, O. Kravchenko, Y. Gripich, L. Hluchy, P. Kopp, and E. Lupian, “The data fusion Grid infrastructure: Project objectives and achievements,” Computing and Informatics, B29, No. 2, 319–334 (2012).

  19. N. N. Kussul, A. Y. Shelestov, S. V. Skakun, Guoqing Li, and O. M. Kussul, “The wide area grid testbed for flood monitoring using earth observation data,” IEEE J. of Selected Topics in Applied Earth Observations and Remote Sensing, 5, No. 6, 1746–1751 (2012).

  20. D. Achlioptas, “Database-friendly random projections: Johnson–Lindenstrauss with binary coins,” J. Comp. and System Sci., 66, No. 4, 671–687 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Charikar, “Similarity estimation techniques from rounding algorithms,” ACM Symposium on Theory of Computing, Vol. 1, ACM, Montreal (Canada) (2002), pp. 380–388.

  22. P. Li, T. J. Hastie, and K. W. Church, “Very sparse random projections,” in: Proc. 12th ACM SIGKDD Intern. Conf. on Knowledge Discovery and Data Mining, ACM Press, Philadelphia (USA) (2006), pp. 287–296.

  23. D. A. Rachkovskij, I. S. Misuno, and S. V. Slipchenko, “Randomized projective methods for the construction of binary sparse vector representations,” Cybern. Syst. Analysis, 48, No. 1, 146–156 (2012).

    Article  MATH  Google Scholar 

  24. D. A. Rachkovskij, “Vector data transformation using random binary matrices,” Cybern. Syst. Analysis, 50, No. 6, 960–968 (2014).

    Article  Google Scholar 

  25. E. G. Revunova and D. A. Rachkovskij, “Using randomized algorithms for solving discrete ill-posed problems,” Information Theories and Applications, 16, No. 2, 176–192 (2009).

    Google Scholar 

  26. D. A. Rachkovskij and E. G. Revunova, “Randomized method for solving discrete ill-posed problems,” Cybern. Syst. Analysis, 48, No. 4, 621–635 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  27. N. M. Amosov, T. N. Baidyk, A. D. Goltsev, A. M. Kasatkin, L. M. Kasatkina, E. M. Kussul, and D. A. Rachkovskij, Neurocomputers and Intelligent Robots [in Russian], Naukova Dumka, Kyiv (1991).

    Google Scholar 

  28. D. A. Rachkovskij, E. M. Kussul, and T. N. Baidyk, “Building a world model with structure-sensitive sparse binary distributed representations,” Biologically Inspired Cognitive Architectures, 3, 64–86 (2013).

    Article  Google Scholar 

  29. R. S. Omelchenko, “Spellchecker based on distributed representation,” Problems in Programming, No. 4, 35–42 (2013).

  30. A. Frolov, A. Kartashov, A. Goltsev, and R. Folk, “Quality and efficiency of retrieval for Willshaw-like autoassociative networks. I. Correction,” Network: Computation in Neural Systems, 6, No. 4, 513–534 (1995).

    Article  MATH  Google Scholar 

  31. A. Frolov, A. Kartashov, A. Goltsev, and R. Folk, “Quality and efficiency of retrieval for Willshaw-like autoassociative networks. II. Recognition,” Network: Computation in Neural Systems, 6, No. 4, 535–549 (1995).

    Article  MATH  Google Scholar 

  32. A. A. Frolov, D. Husek, and I. P. Muraviev, “Informational capacity and recall quality in sparsely encoded Hopfield-like neural network: Analytical approaches and computer simulation,” Neural Networks, 10, No. 5, 845–855 (1997).

    Article  Google Scholar 

  33. A. A. Frolov, D. A. Rachkovskij, and D. Husek, “On information characteristics of Willshaw-like auto-associative memory,” Neural Network World, 12, No. 2, 141–158 (2002).

    Google Scholar 

  34. A. A. Frolov, D. Husek, and D. A. Rachkovskij, “Time of searching for similar binary vectors in associative memory,” Cybern. Syst. Analysis, 42, No. 5, 615–623 (2006).

    Article  MATH  Google Scholar 

  35. D. W. Nowicki and O. K. Dekhtyarenko, “Averaging on Riemannian manifolds and unsupervised learning using neural associative memory,” in: Proc. 13th European Symp. on Artificial Neural Networks (ESANN 2005) (April 27–29), Bruges, Belgium (2005), pp. 181–189.

  36. D. Nowicki, P. Verga, and H. Siegelmann, “Modeling reconsolidation in kernel associative memory,” PloS one, 8, No. 8 (2013), e68189.doi:10.1371/journal.pone.0068189.

    Article  Google Scholar 

  37. O. M. Riznyk and D. O. Dzyuba, “Dynamic associative memory based on open source recurrent neural network,” Matem. Mash. Syst., No. 2, 50–60 (2010).

  38. Central limit theorem, http://en.wikipedia.org/wiki/Central_limit_theorem.

  39. A. C. Berry, “The accuracy of the Gaussian approximation to the sum of independent variates,” Trans. American Math. Society, 49, 122–136 (1941).

    Article  Google Scholar 

  40. C. G. Esseen, “On the Liapunov limit of error in the theory of probability,” Arkiv fur Matematik, Astronomi och Fysik, 28A, No. 9, 1–19 (1942).

    MathSciNet  Google Scholar 

  41. C. G. Esseen, “A moment inequality with an application to the central limit theorem,” Skandinavisk Aktuarietidskrift, 39, 160–170 (1956).

    MathSciNet  Google Scholar 

  42. V. Korolev and I. Shevtsova, “An improvement of the Berry–Esseen inequality with applications to Poisson and mixed Poisson random sums,” Scandinavian Actuarial J., No. 2, 81–105 (2012).

  43. I. G. Shevtsova, “On the absolute constants in the Berry–Esseen-type inequalities,” Doklady Mathematics, 89, No. 3, 378–381 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  44. I. S. Tyurin, “ Refinement of the remainder term in Lyapunov’s theorem,” Theory of Probab. and its Application, 56, No. 4, 808–811 (2011).

    MathSciNet  Google Scholar 

  45. S. V. Nagaev and V. I. Chebotarev, “On the bound of proximity of the binomial distribution to the normal one,” Doklady Mathematics, 83, No. 1, 19–21 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  46. C. Walck, “Hand-book on statistical distributions for experimentalists,” Internal Report SUF-PFY/96-01 (last modification 10 Sept. 2007), Fysikum, University of Stockholm, Particle Physics Group (2007).

  47. V. A. Bentkus, “Lyapunov type bound in Rd,” Theory of Probab. and its Applications, 49, 311–323 (2005).

    Article  MathSciNet  Google Scholar 

  48. R. N. Bhattacharya and S. Holmes, “An exposition of Gotze’s estimation of the rate of convergence in the multivariate central limit theorem,” Eprint arXiv:1003.4254 (2010).

  49. L. H. Y. Chen and X. Fang, “Multivariate normal approximation by Stein’s method: The concentration inequality approach,” Eprint arXiv:1111.4073 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Rachkovskij.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 2, March–April, 2015, pp. 175–187.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rachkovskij, D.A. Formation of Similarity-Reflecting Binary Vectors with Random Binary Projections. Cybern Syst Anal 51, 313–323 (2015). https://doi.org/10.1007/s10559-015-9723-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-015-9723-z

Keywords

Navigation