Skip to main content
Log in

Should the septum be included in the assessment of right ventricular longitudinal strain? An ultrasound two-dimensional speckle-tracking stress study

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Right ventricular longitudinal strain (RVLS) by 2D speckle-tracking echocardiography (2D-STE) is a useful parameter for assessing systolic function. However, the exact method to perform it is not well defined as some authors evaluate only free wall (FW) segments while others include all six RV segments. To compare the assessment of RVLS at rest and during exercise by these two approaches. Echocardiography was performed on 80 healthy subjects at rest and during exercise. The analysis consisted of standard and 2D-STE assessment of RV global and segmental strain tracing only RVFW and also tracing all six RV segments. At rest, RVLS could be assessed in 78 (feasibility 97.5%) subjects by both methods. However, during exercise, RVLS by RVFW method was feasible in 67 (83.8%) as compared to 74 (92.5%) by RV6S approach. Both at rest and during exercise, RVLS values by the two methods showed excellent correlation (r =  > 0.90). However, RVLS values assessed by RV6S were lower (absolute values) than those by RVFW approach (RV6S vs. RVFW; rest: − 27.0 ± 3.9 vs. − 9.5 ± 3.9, p < 0.001 and exercise: − 30.7 ± 5.2 vs. − 33.3 ± 5.1, p < 0.001). Furthermore, basal strain was higher and apical strain lower (absolute values) by RV6S approach. At rest, reproducibility for RVLS was excellent and similar for the two methods. However, during exercise, reproducibility for RVFW method was poorer, especially at the apex. The two currently described methods for RVLS assessment by 2D-STE demonstrated excellent agreement. However, the RV6S approach seemed to be more feasible and reproducible, particularly during exercise. Moreover, global and segmental strain values are different with both methods and should not be interchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American society of echocardiography and the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging 16:233–271. https://doi.org/10.1093/ehjci/jev014

    Article  PubMed  Google Scholar 

  2. Badano LP, Kolias TJ, Muraru D et al (2018) Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Hear J Cardiovasc Imaging. 19(6):591–600. https://doi.org/10.1093/ehjci/jey042

    Article  Google Scholar 

  3. Rudski LG, Lai WW, Afilalo J et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography. J Am Soc Echocardiogr 23:685–713. https://doi.org/10.1016/j.echo.2010.05.010

    Article  PubMed  Google Scholar 

  4. Orwat S, Diller G-P, Kempny A et al (2016) Myocardial deformation parameters predict outcome in patients with repaired tetralogy of Fallot. Heart 102(3):209–215. https://doi.org/10.1136/heartjnl-2015-308569

    Article  CAS  PubMed  Google Scholar 

  5. Park J-H, Park MM, Farha S et al (2015) Impaired global right ventricular longitudinal strain predicts long-term adverse outcomes in patients with pulmonary arterial hypertension. J Cardiovasc Ultrasound 23(2):91–99. https://doi.org/10.4250/jcu.2015.23.2.91

    Article  PubMed  PubMed Central  Google Scholar 

  6. Satriano A, Pournazari P, Hirani N et al (2019) Characterization of right ventricular deformation in pulmonary arterial hypertension using three-dimensional principal strain analysis. J Am Soc Echocardiogr 32(3):385–393. https://doi.org/10.1016/j.echo.2018.10.001

    Article  PubMed  Google Scholar 

  7. Lisi M, Cameli M, Righini FM et al (2015) RV longitudinal deformation correlates with myocardial fibrosis in patients with end-stage heart failure. JACC Cardiovasc Imaging 8:514–522. https://doi.org/10.1016/j.jcmg.2014.12.026

    Article  PubMed  Google Scholar 

  8. Carluccio E, Biagioli P, Alunni G et al (2018) Prognostic value of right ventricular dysfunction in heart failure with reduced ejection fraction: superiority of longitudinal strain over tricuspid annular systolic excursion. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.117.006894

    Article  PubMed  Google Scholar 

  9. Teske AJ, Cox MGPJ, Riele ASJM (2010) Early detection of regional functional abnormalities in asymptomatic ARVD/C gene carriers. J Am Soc Echocardiogr 25:997–1006. https://doi.org/10.1016/j.echo.2012.05.008

    Article  Google Scholar 

  10. Sanz de la Garza M, Grazioli G, Bijnens BH et al (2015) Inter-individual variability in right ventricle adaptation after an endurance race. Eur J Prev Cardiol 23:1114–1124. https://doi.org/10.1177/2047487315622298

    Article  PubMed  Google Scholar 

  11. Muraru D, Onciul S, Peluso D et al (2016) Sex- and method-specific reference values for right ventricular strain by 2-dimensional speckle-tracking echocardiography. Circ Cardiovasc Imaging 9:1–10. https://doi.org/10.1161/CIRCIMAGING.115.003866

    Article  Google Scholar 

  12. Rudski LG, Gargani L, Armstrong WF et al (2018) Stressing the cardiopulmonary vascular system: the role of echocardiography. J Am Soc Echocardiogr 31:527.e11–550.e11. https://doi.org/10.1016/j.echo.2018.01.002

    Article  Google Scholar 

  13. Sanz de la Garza M, Giraldeau G, Marin J et al (2017) Influence of gender on right ventricle adaptation to endurance exercise: an ultrasound two-dimensional speckle-tracking stress study. Eur J Appl Physiol 117(3):389–396. https://doi.org/10.1007/s00421-017-3546-8

    Article  PubMed  Google Scholar 

  14. Vitarelli A, Cortes Morichetti M, Capotosto L et al (2013) Utility of strain echocardiography at rest and after stress testing in arrhythmogenic right ventricular dysplasia. Am J Cardiol 111:1344–1350. https://doi.org/10.1016/j.amjcard.2013.01.279

    Article  PubMed  Google Scholar 

  15. D’Andrea A, Limongelli G, Baldini L et al (2017) Exercise speckle-tracking strain imaging demonstrates impaired right ventricular contractile reserve in hypertrophic cardiomyopathy. Int J Cardiol 227:209–216. https://doi.org/10.1016/j.ijcard.2016.11.150

    Article  PubMed  Google Scholar 

  16. La Gerche A, Claessen G, Dymarkowski S et al (2015) Exercise-induced right ventricular dysfunction is associated with ventricular arrhythmias in endurance athletes. Eur Heart J 36:1998–2010. https://doi.org/10.1093/eurhearj/ehv199

    Article  Google Scholar 

  17. Baumgartner H, Hung J, Bermejo J et al (2017) Recommendations on the echocardiographic assessment of aortic valve stenosis: a focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr 30:372–392. https://doi.org/10.1016/j.echo.2017.02.009

    Article  PubMed  Google Scholar 

  18. Yzaguirre I, Grazioli G, Domenech M et al (2017) Exaggerated blood pressure response to exercise and late-onset hypertension in young adults. Blood Press Monit. 22(6):339–344. https://doi.org/10.1097/MBP.0000000000000293

    Article  PubMed  Google Scholar 

  19. Wright L, Dwyer N, Power J et al (2016) Right ventricular systolic function responses to acute and chronic pulmonary hypertension: assessment with myocardial deformation. J Am Soc Echocardiogr 29:259–266. https://doi.org/10.1016/j.echo.2015.11.010

    Article  PubMed  Google Scholar 

  20. Grünig E, Tiede H, Enyimayew EO et al (2013) Assessment and prognostic relevance of right ventricular contractile reserve in patients with severe pulmonary hypertension. Circulation 128(18):2005–2015. https://doi.org/10.1161/CIRCULATIONAHA.113.001573

    Article  PubMed  Google Scholar 

  21. Nagy VK, Széplaki G, Apor A et al (2015) Role of right ventricular global longitudinal strain in predicting early and long-term mortality in cardiac resynchronization therapy patients. PLoS ONE 10(12):e0143907. https://doi.org/10.1371/journal.pone.0143907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Antoni ML, Scherptong RWC, Atary JZ et al (2010) Prognostic value of right ventricular function in patients after acute myocardial infarction treated with primary percutaneous coronary intervention. Circ Cardiovasc Imaging 3:264–271. https://doi.org/10.1161/CIRCIMAGING.109.914366

    Article  PubMed  Google Scholar 

  23. Buckberg GD (2006) The ventricular septum: the lion of right ventricular function, and its impact on right ventricular restoration. Eur J Cardiothoracic Surg. 29:272–278. https://doi.org/10.1016/j.ejcts.2006.02.011

    Article  Google Scholar 

  24. Santamore WP, Dell’Italia LJ (1998) Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis. 40:289–308. https://doi.org/10.1016/S0033-0620(98)80049-2

    Article  CAS  PubMed  Google Scholar 

  25. Motoki H, Borowski AG, Shrestha K et al (2014) Right ventricular global longitudinal strain provides prognostic value incremental to left ventricular ejection fraction in patients with heart failure. J Am Soc Echocardiogr. 27(7):726–732. https://doi.org/10.1016/j.echo.2014.02.007

    Article  PubMed  Google Scholar 

  26. Afonso L, Briasoulis A, Mahajan N et al (2015) Comparison of right ventricular contractile abnormalities in hypertrophic cardiomyopathy versus hypertensive heart disease using two dimensional strain imaging: a cross-sectional study. Int J Cardiovasc Imaging. 31(8):1503–1509. https://doi.org/10.1007/s10554-015-0722-y

    Article  PubMed  Google Scholar 

  27. Wright L, Negishi K, Dwyer N et al (2015) Afterload dependence of right ventricular myocardial strain. J Am Soc Echocardiogr. 30:676–684. https://doi.org/10.1016/j.echo.2017.03.002

    Article  Google Scholar 

  28. Motoji Y, Tanaka H, Fukuda Y et al (2013) Efficacy of right ventricular free-wall longitudinal speckle-tracking strain for predicting long-term outcome in patients with pulmonary hypertension. Circ J. 77(3):756–763. https://doi.org/10.1253/circj.CJ-12-1083

    Article  PubMed  Google Scholar 

  29. Lancellotti P, Pellikka PA, Co-chair F et al (2016) The Clinical use of stress echocardiography in non-ischaemic heart disease: recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr 30:101–138. https://doi.org/10.1016/j.echo.2016.10.016

    Article  Google Scholar 

  30. Pieles GE, Gowing L, Forsey J et al (2015) The relationship between biventricular myocardial performance and metabolic parameters during incremental exercise and recovery in healthy adolescents. Am J Physiol Circ Physiol. 309:2067–2076. https://doi.org/10.1152/ajpheart.00627.2015

    Article  CAS  Google Scholar 

  31. La Gerche A, Burns AT, D’Hooge J et al (2012) Exercise strain rate imaging demonstrates normal right ventricular contractile reserve and clarifies ambiguous resting measures in endurance athletes. J Am Soc Echocardiogr 25(3):253–262. https://doi.org/10.1016/j.echo.2011.11.023

    Article  PubMed  Google Scholar 

  32. Rankin JS, McHale PA, Arentzen CE et al (1976) The three-dimensional dynamic geometry of the left ventricle in the conscious dog. Circ Res. 39:304–313

    Article  CAS  Google Scholar 

  33. Sanchis L, La Garza MS, Bijnens B et al (2017) Gender influence on the adaptation of atrial performance to training. Eur J Sport Sci. 17(6):720–726. https://doi.org/10.1080/17461391.2017.1294620

    Article  PubMed  Google Scholar 

  34. Lord RN, George K, Jones H et al (2014) Reproducibility and feasibility of right ventricular strain and strain rate (SR) as determined by myocardial speckle tracking during high-intensity upright exercise: a comparison with tissue Doppler-derived strain and SR in healthy human hearts. Echo Res Pract. 1:31–41. https://doi.org/10.1530/ERP-14-0011

    Article  PubMed  PubMed Central  Google Scholar 

  35. Teske AJ, De Boeck BWL, Olimulder M et al (2008) Echocardiographic assessment of regional right ventricular function: a head-to-head comparison between 2-dimensional and tissue doppler-derived strain analysis. J Am Soc Echocardiogr 21:275–283. https://doi.org/10.1016/j.echo.2007.08.027

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially funded by grants from the Generalitat de Catalunya (FI-AGAUR 2014–2017 (RH 040991, M. Sanz), and from the Spanish Government (Plan Nacional I+D, Ministerio de Economia y Competitividad DEP2013-44923-P; TIN2014-52923-R and FEDER).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Sanz-de la Garza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanz-de la Garza, M., Giraldeau, G., Marin, J. et al. Should the septum be included in the assessment of right ventricular longitudinal strain? An ultrasound two-dimensional speckle-tracking stress study. Int J Cardiovasc Imaging 35, 1853–1860 (2019). https://doi.org/10.1007/s10554-019-01633-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-019-01633-6

Keywords

Navigation