Skip to main content

Advertisement

Log in

Evaluation of Algorithms for Intracranial EEG (iEEG) Source Imaging of Extended Sources: Feasibility of Using iEEG Source Imaging for Localizing Epileptogenic Zones in Secondary Generalized Epilepsy

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Precise identification of epileptogenic zones in patients with intractable drug-resistant epilepsy is critical for successful epilepsy surgery. Numerous source-imaging algorithms for localizing epileptogenic zones based on scalp electroencephalography (EEG) and magnetoencephalography (MEG) have been developed and validated in simulation and experimental studies. Recently, intracranial EEG (iEEG)-based imaging of epileptogenic sources has attracted interest as a promising tool for presurgical evaluation of epilepsy; however, most iEEG studies have focused on localization of epileptogenic zones in focal epilepsy. In the present study, we investigated whether iEEG source imaging is a useful supplementary tool for identifying extended epileptogenic sources in secondary generalized epilepsy such as Lennox-Gastaut syndrome (LGS). To this end, we applied four different cortical source imaging algorithms, namely minimum norm estimation (MNE), low-resolution electromagnetic tomography (LORETA), standardized LORETA (sLORETA), and L p -norm estimation (p = 1.5, referred to as Lp1.5), to artificial iEEG datasets generated assuming various source sizes and locations. We also applied these four algorithms to clinical ictal iEEG recordings acquired from a pediatric patient with LGS. Interestingly, the traditional MNE algorithm outperformed the other imaging algorithms in most of our experiments, particularly in cases when larger-sized sources were activated. Although sLORETA outperformed both LORETA and Lp1.5, its performance was not as good as that of MNE. Compared to the other algorithms, the performance of Lp1.5 decayed most rapidly as the source size increased. Our findings suggest that iEEG source imaging using MNE is a promising auxiliary tool for the identification of epileptogenic zones in secondary generalized epilepsy. We anticipate that our results will provide useful guidelines for selection of an appropriate imaging algorithm for iEEG source imaging studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aghakhani Y, Bagshaw AP, Benar CG, Hawco C, Andermann F, Dubeau F et al (2004) fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain 127:1127–1144

    Article  PubMed  CAS  Google Scholar 

  • Archer JS, Abbott DF, Waites AB, Jackson GD (2003) fMRI “deactivation” of the posterior cingulate during generalized spike and wave. NeuroImage 20:1915–1922

    Article  PubMed  Google Scholar 

  • Babiloni F, Babiloni C, Carducci F, Romani GL, Rossini PM, Angelone LM, Cincotti F (2003) Multimodal integration of high-resolution EEG and functional magnetic resonance imaging data: a simulation study. NeuroImage 19:1–15

    Article  PubMed  CAS  Google Scholar 

  • Babiloni F, Cincotti F, Babiloni C, Carducci F, Mattia D, Astolfi L, Basilisco A, Rossini PM, Ding L, Ni Y, Cheng J, Christine K, Sweeney J, He B (2005) Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function. NeuroImage 24:118–131

    Article  PubMed  CAS  Google Scholar 

  • Bai X, Towle VL, He EJ, He B (2007) Evaluation of cortical current density imaging methods using intracranial electrocorticograms and functional MRI. NeuroImage 35:598–608

    Article  PubMed  Google Scholar 

  • Bai X, Vestal M, Berman R, Negishi M, Spann M, Vega C, DeSalvo MN, Novotny E, Constable RT, Blumenfeld H (2010) Dynamic timecourse of typical childhood absence seizures: EEG, behavior and fMRI. J Neurosci 30:5884–5893

    Article  PubMed  CAS  Google Scholar 

  • Behrens E, Zentner J, Van Roost D, Hufnagel A, Elger CE, Schramm J (1994) Subdural and depth electrodes in the presurgical evaluation of epilepsy. Acta Neurochir 128:84–87

    Article  CAS  Google Scholar 

  • Berman R, Negishi M, Spann M, Chung MH, Bai X, Purcaro M, Motelow JE, DixCooper L, Enev M, Novotny EJ, Constable RT, Blumenfeld H (2010) Simultaneous EEG, fMRI, and behavioral testing in typical childhood absence seizures. Epilepsia 51:2011–2022

    Article  PubMed  Google Scholar 

  • Binnie CD, Elwes RDC, Polkey CE, Volans A (1994) Utility of stereoelectroencephalography in preoperative assessment of temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 57:58–65

    Article  PubMed  CAS  Google Scholar 

  • Dale AM, Sereno MI (1993) Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5:162–176

    Article  Google Scholar 

  • Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26:55–67

    Article  PubMed  CAS  Google Scholar 

  • Dubeau F, McLachlan RS (2000) Invasive electrographic recording techniques in temporal lobe epilepsy. Can J Neurol Sci 27:S29–S34

    PubMed  Google Scholar 

  • Dümpelmann M, Fell J, Wellmer J, Urbach H, Elger CE (2009) 3D source localization derived from subdural strip and grid electrodes: a simulation study. Clin Neurophysiol 120:1061–1069

    Article  PubMed  Google Scholar 

  • Fuchs M, Wagner M, Köhler T, Wischmann HA (1999) Linear and nonlinear current density reconstructions. J Clin Neurophysiol 16:267–295

    Article  PubMed  CAS  Google Scholar 

  • Fuchs M, Wagner M, Kastner J (2007) Development of volume conductor and source models to localize epileptic foci. J Clin Neurophysiol 24:101–119

    Article  PubMed  Google Scholar 

  • Gotman J, Grova C, Bagshaw A, Kobayshi E, Aghakhani Y, Dubeau F (2005) Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci USA 102:15236–15240

    Article  PubMed  CAS  Google Scholar 

  • Grova C, Daunizeau J, Lina JM, Bénar CG, Benali H, Gotman J (2006) Evaluation of EEG localization methods using realistic simulations of interictal spikes. NeuroImage 29:734–753

    Article  PubMed  CAS  Google Scholar 

  • Heiskala H (1997) Community-based study of lennox-gastaut syndrome. Epilepsia 38:526–531

    Article  PubMed  CAS  Google Scholar 

  • Im CH, An KO, Jung HK, Kwon H, Lee YH (2003) Assessment criteria for MEG/EEG cortical patch tests. Phys Med Biol 48:2561–2573

    Article  PubMed  Google Scholar 

  • Kim YK, Lee DS, Lee SK, Chung CK, Chung JK, Lee MC (2002) 18F-FDG PET in localization of frontal lobe epilepsy: comparison of visual and SPM analysis. J Nucl Med 43:1167–1174

    PubMed  Google Scholar 

  • Kim JS, Im CH, Jung YJ, Kim EY, Lee SK, Chung CK (2010) Localization and propagation analysis of ictal source rhythm by electrocorticography. NeuroImage 52:1279–1288

    Article  PubMed  Google Scholar 

  • Kincses WE, Braun C, Kaiser S, Elbert T (1999) Modeling extended sources of event-related potentials using anatomical and physiological constraints. Hum Brain Mapp 8:182–193

    Article  PubMed  CAS  Google Scholar 

  • Krakow K, Woermann FG, Symms MR, Allen PJ, Lemieux L, Barker GJ, Duncan JS, Fish DR (1999) EEG-triggered functional MRI of interictal epileptiform activity in patients with partial seizures. Brain 122:1679–1688

    Article  PubMed  Google Scholar 

  • Lee YJ, Kang HC, Lee JS, Kim SH, Kim DS, Shim KW, Lee YH, Kim TS, Kim HD (2010) Resective pediatric epilepsy surgery in Lennox-Gastaut syndrome. Pediatrics 125:e58–e66

    Article  PubMed  Google Scholar 

  • Liu AK, Dale AM, Belliveau JW (2002) Monte Carlo simulation studies of EEG and MEG localization accuracy. Hum Brain Mapp 16:47–62

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Schimpf PH, Dong G, Gao X, Yang F, Gao S (2005) Standardized shrinking LORETA-FOCUSS (SSLOFO): a new algorithm for spatio-temporal EEG source reconstruction. IEEE Trans Biomed Eng 52:1681–1691

    Article  PubMed  Google Scholar 

  • Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Grave De Peralta R (2004) EEG source imaging. Clin Neurophysiol 115:2195–2222

    Article  PubMed  Google Scholar 

  • Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, New York

    Book  Google Scholar 

  • Oliveira AJ, Da Costa JC, Hilário LN, Anselmi OE, Palmini A (1999) Localization of the epileptogenic zone by ictal and interictal SPECT with 99mTc-ethyl cysteinate dimer in patients with medically refractory epilepsy. Epilepsia 40:693–702

    Article  PubMed  CAS  Google Scholar 

  • Oostendorp TF, Delbeke J, Stegeman DF (2000) The conductivity of the human skull: results of in vivo and in vitro measurements. IEEE Trans Biomed Eng 47:1487–1492

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12

    PubMed  Google Scholar 

  • Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65

    Article  PubMed  CAS  Google Scholar 

  • Plummer C, Wagner M, Fuchs M, Vogrin S, Litewka L, Farish S, Bailey C, Harvey AS, Cook MJ (2010) Clinical utility of distributed source modelling of interictal scalp EEG in focal epilepsy. Clin Neurophysiol 121:1726–1739

    Article  PubMed  CAS  Google Scholar 

  • Pondal-Sordo M, Diosy D, Téllez-Zenteno JF, Sahjpaul R, Wiebe S (2007) Usefulness of intracranial EEG in the decision process for epilepsy surgery. Epilepsy Res 74:176–182

    Article  PubMed  Google Scholar 

  • Rosenow F, Lüders H (2001) Presurgical evaluation of epilepsy. Brain 124:1683–1700

    Article  PubMed  CAS  Google Scholar 

  • Salek-Haddadi A, Lemieux L, Merschhemke M, Friston K, Duncan J, Fish D (2003) Functional magnetic resonance imaging of human absence seizures. Ann Neurol 53:663–667

    Article  PubMed  Google Scholar 

  • Surazhsky V, Surazhsky T, Kirsanov D, Gortler SJ, Hoppe H (2005) Fast exact and approximate geodesics on meshes. ACM Trans Graph 24:553–560

    Article  Google Scholar 

  • Wang JZ, Williamson SJ, Kaufman L (1992) Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation. IEEE Trans Biomed Eng 39:665–675

    Article  PubMed  CAS  Google Scholar 

  • Wilke C, Van Drongelen W, Kohrman M, He B (2010) Neocortical seizure foci localization by means of a directed transfer function method. Epilepsia 51:564–572

    Article  PubMed  Google Scholar 

  • Wischmann HA, Fuchs M, Dössel O (1992) Effect of the signal-to-noise ratio on the quality of linear estimation reconstructions of distributed current sources. Brain Topogra 5:189–194

    Article  CAS  Google Scholar 

  • Wu JY, Sutherling WW, Koh S, Salamon N, Jonas R, Yudovin S, Sankar R, Shields WD, Mathern GW (2006) Magnetic source imaging localizes epileptogenic zone in children with tuberous sclerosis complex. Neurology 66:1270–1272

    Article  PubMed  CAS  Google Scholar 

  • Wyllie E, Lachhwani DK, Gupta A, Chirla A, Cosmo G, Worley S, Kotagal P, Ruggieri P, Bingaman WE (2007) Successful surgery for epilepsy due to early brain lesions despite generalized EEG findings. Neurology 69:389–397

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Dewald JPA (2005) Evaluation of different cortical source localization methods using simulated and experimental EEG data. NeuroImage 25:369–382

    Article  PubMed  Google Scholar 

  • Zhang YC, Ding L, van Drongelen W, Hecox K, Frim DM, He B (2006) A cortical potential imaging study from simultaneous extra- and intracranial electrical recordings by means of the finite element method. NeuroImage 31:1513–1524

    Article  PubMed  Google Scholar 

  • Zhang YC, van Drongelen W, Kohrman M, He B (2008) Three-dimensional brain current source reconstruction from intra-cranial ECoG recordings. NeuroImage 42:683–695

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (A090579-0901-0000201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hwan Im.

Additional information

Jae-Hyun Cho and Seung Bong Hong contributed equally to this study (co-first authors).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 606 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, JH., Hong, S.B., Jung, YJ. et al. Evaluation of Algorithms for Intracranial EEG (iEEG) Source Imaging of Extended Sources: Feasibility of Using iEEG Source Imaging for Localizing Epileptogenic Zones in Secondary Generalized Epilepsy. Brain Topogr 24, 91–104 (2011). https://doi.org/10.1007/s10548-011-0173-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-011-0173-2

Keywords

Navigation