Skip to main content
Log in

Revisiting the Local Scaling Hypothesis in Stably Stratified Atmospheric Boundary-Layer Turbulence: an Integration of Field and Laboratory Measurements with Large-Eddy Simulations

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The ‘local scaling’ hypothesis, first introduced by Nieuwstadt two decades ago, describes the turbulence structure of the stable boundary layer in a very succinct way and is an integral part of numerous local closure-based numerical weather prediction models. However, the validity of this hypothesis under very stable conditions is a subject of ongoing debate. Here, we attempt to address this controversial issue by performing extensive analyses of turbulence data from several field campaigns, wind-tunnel experiments and large-eddy simulations. A wide range of stabilities, diverse field conditions and a comprehensive set of turbulence statistics make this study distinct

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

f c :

Coriolis parameter

g :

gravitational acceleration

G :

geostrophic wind speed

H :

boundary-layer height

L :

Obukhov length ( \(= -{\Theta u_*^3}/{\kappa g (\overline{w\theta})}\))

r mn :

correlation coefficient between m and n

u,v,w :

velocity fluctuations (around the average) in x,y and z directions

U,V :

mean velocity components in x and y directions

u * :

friction velocity \(\left(=\sqrt[4]{{\overline{uw}}^2+{\overline{vw}}^2}\right)\)

\(\overline{uw},\overline{vw}\) :

vertical turbulent momentum fluxes

\(\overline{u\theta},\overline{w\theta}\) :

longitudinal and vertical heat fluxes

z :

height above the surface

κ:

von Karman constant (=0.40)

Λ:

local Obukhov length

σ m :

standard deviation of m

θ:

temperature fluctuations (around the average)

Θ:

mean temperature

θ* :

temperature scale ( \(=-{\overline{w\theta}}/{u_*}\))

ζ:

stability parameter (=z/Λ)

References

  • Albertson J.D. and Parlange M.B. (1999). ‘Natural Integration of Scalar Fluxes from Complex Terrain’. Adv. Wat. Res. 23:239–252

    Article  Google Scholar 

  • Andrén A. (1995). ‘The Structure of Stably Stratified Atmospheric Boundary Layers: A Large-Eddy Simulation Study’. Quart. J. Roy. Meteorol. Soc. 121:961–985

    Article  Google Scholar 

  • Arya S.P. (2001). Introduction to Micrometeorology. Academic Press, San Diego CA, 420 pp

    Google Scholar 

  • Barnard J.C. (2000). `Intermittent Turbulence in the Very Stable Ekman Layer’ PhD Thesis, Department of Mechanical Engineering, University of Washington, 154 pp

  • Basu, S., Foufoula-Georgiou, E., and Porté-Agel, F.: 2002, ‘Predictability of Atmospheric Boundary-layer Flows as a Function of Scale’. Geophys. Res. Lett. 29, doi:10.1029/2002GL015497

  • Basu, S.: 2004, ‘Large-Eddy Simulation of Stably Stratified Atmospheric Boundary Layer Turbulence: A Scale-Dependent Dynamic Modeling Approach’, PhD Thesis, Department of Civil Engineering, University of Minnesota, 114 pp

  • Beare R.J. and MacVean M.K. (2004). ‘Resolution Sensitivity and Scaling of Large-Eddy Simulations of the Stable Boundary Layer’. Boundary-Layer Meteorol. 112:257–281

    Article  Google Scholar 

  • Beare R.J. et al. (2006), ‘An Intercomparison of Large-Eddy Simulations of the Stable Boundary Layer’. Boundary-Layer Meteorol. 118:xx-xx

  • Beljaars A. (1992). ‘The Parameterization of the Planetary Boundary Layer’. ECMWF Meteorological Training Course Lecture Series, 1–57

  • Beljaars A. and Viterbo P. (1998). ‘The Role of the Boundary Layer in a Numerical Weather Prediction Model’. In: Holtslag A.A.M., Duynkerke P.G (eds). Clear and Cloudy Boundary Layers. Royal Netherlands Academy of Arts and Sciences, Amsterdam, pp. 297–304

    Google Scholar 

  • Brown A.R., Derbyshire S.H, and Mason P.J. (1994). ‘Large-Eddy Simulation of Stable Atmospheric Boundary Layers with a Revised Stochastic Subgrid Model’. Quart. J. Roy. Meteorol. Soc. 120:1485–1512

    Article  Google Scholar 

  • Canuto C., Hussaini M.Y., Quarteroni A., and Zhang T.A. (1988). Spectral Methods in Fluid Dynamics. Springer Verlag, Berlin Germany, 557 pp

    Google Scholar 

  • Caughey S.J. (1982). ‘Observed Characteristics of the Atmospheric Boundary Layer’. In: Nieuwstadt F.T.M., van Dop H (eds). Atmospheric Turbulence and Air Pollution Modelling, D. Reidel Publishing Company, Dordrecht, pp. 107–158

    Google Scholar 

  • Cuxart J., and Coauthors (2000). ‘Stable Atmospheric Boundary-Layer Experiment in Spain (SABLES 98): A Report’. Boundary-Layer Meteorol. 96:337–370

    Article  Google Scholar 

  • Derbyshire S.H. (1990). ‘Nieuwstadt’s Stable Boundary Layer Revisited’. Quart. J. Roy. Meteorol. Soc. 116:127–158

    Article  Google Scholar 

  • Derbyshire S.H. (1999). ‘Stable Boundary-Layer Modelling: Established Approaches and Beyond’. Boundary-Layer Meteorol. 90:423–446

    Article  Google Scholar 

  • Dias N.L., Brutsaert W., and Wesely M.L. (1995). ‘Z-Less Stratification under Stable Conditions’. Boundary-Layer Meteorol. 75:175–187

    Article  Google Scholar 

  • Ding F., Arya S.P., and Lin Y.-L. (2001). ‘Large-Eddy Simulations of the Atmospheric Boundary Layer Using a New Subgrid-Scale Model: Part II. Weakly and Moderately Stable Cases’. Environ. Fluid Mech. 1:49–69

    Article  Google Scholar 

  • Forrer J. and Rotach M.W. (1997). ‘On the Turbulence Structure in the Stable Boundary Layer over the Greenland Ice Sheet’. Boundary-Layer Meteorol. 85:111–136

    Article  Google Scholar 

  • Galmarini S., Beets C., Duynkerke P.G., and Vilà-Guerau de Arellano J. (1998). ‘Stable Nocturnal Boundary Layers: A Comparison of One-dimensional and Large-eddy Simulation Models’. Boundary-Layer Meteorol. 88:181–210

    Article  Google Scholar 

  • Germano M., Piomelli U., Moin P., and Cabot W.H. (1991). ‘A Dynamic Subgrid-scale Eddy Viscosity Model’. Phys. Fluids A 3:1760–1765

    Article  Google Scholar 

  • Ghosal S., Lund T.S., Moin P., and Akselvoll K. (1995). ‘A Dynamic Localization Model for Large-Eddy Simulation of Turbulent Flows’. Phys. Fluids A 3:1760–1765

    Google Scholar 

  • Heinemann G. (2004). ‘Local Similarity Properties of the Continuously Turbulent Stable Boundary Layer over Greenland’. Boundary-Layer Meteorol. 112:283–305

    Article  Google Scholar 

  • Holtslag A.A.M. (2003). ‘GABLS Initiates Intercomparison for Stable Boundary Layer Case’. GEWEX News 13:7–8

    Google Scholar 

  • Howell J.F. and Sun J. (1999). ‘Surface-Layer Fluxes in Stable Conditions’. Boundary-Layer Meteorol. 90:495–520

    Article  Google Scholar 

  • Hunt J.C.R., Shutts G.J., and Derbyshire S. (1996). ‘Stably Stratified Flows in Meteorology’. Dyn. Atmos. Oceans 23:63–79

    Article  Google Scholar 

  • Kaimal J.C. and Finnigan J.J. (1994). Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, Oxford, U.K., 289 pp

    Google Scholar 

  • Kosović B. and Curry J.A. (2000). ‘A Large Eddy Simulation Study of a Quasi-Steady, Stably Stratified Atmospheric Boundary Layer’. J. Atmos. Sci. 57:1052–1068

    Article  Google Scholar 

  • Lilly D.K. (1992). ‘A Proposed Modification of the Germano Subgrid-scale Closure Method’. Phys. Fluids A 4:633–635

    Article  Google Scholar 

  • Mahli Y.S. (1995). ‘The Significance of the Dual Solutions for Heat Fluxes Measured by the Temperature Fluctuation Method in Stable Conditions’. Boundary-Layer Meteorol. 74:389–396

    Article  Google Scholar 

  • Mahrt L. (1989). ‘Intermittency of Atmospheric Turbulence’. J. Atmos. Sci. 46:79–95

    Article  Google Scholar 

  • Mahrt L. (1998a). ‘Stratified Atmospheric Boundary Layers and Breakdown of Models’. Theoret. Comput. Fluid Dyn. 11:263–279

    Article  Google Scholar 

  • Mahrt L. (1998b). ‘Flux Sampling Errors for Aircraft and Towers’. J. Atmos. Oceanic Tech. 15:416–429

    Article  Google Scholar 

  • Mahrt L. and Vickers D. (2002). ‘Contrasting Vertical Structures of Nocturnal Boundary Layers’. Boundary-Layer Meteorol. 105:351–363

    Article  Google Scholar 

  • Mason P. (1989). ‘Large-Eddy Simulation of the Convective Atmospheric Boundary Layer’. J. Atmos. Sci. 46:1492–1516

    Article  Google Scholar 

  • Mason P. (1994). ‘Large-Eddy Simulation: A Critical Review of the Technique’. Quart. J. Roy. Meteorol. Soc. 120:1–26

    Article  Google Scholar 

  • Mason P.J. and Derbyshire S.H. (1990). ‘Large-Eddy Simulation of the Stably-Stratified Atmospheric Boundary Layer’. Boundary-Layer Meteorol. 53:117–162

    Article  Google Scholar 

  • McNider R.T., England D.E., Friedman M.J., and Shi X. (1995). ‘Predictability of the Stable Atmospheric Boundary Layer’. J. Atmos. Sci. 52:1602–1614

    Article  Google Scholar 

  • Monin A.S. and Yaglom A.M. (1971). Statistical Fluid Mechanics: Mechanics of Turbulence Vol. 1. MIT Press, Cambridge, MA, 769 pp

    Google Scholar 

  • Nieuwstadt F.T.M. (1984a). ‘Some Aspects of the Turbulent Stable Boundary Layer’. Boundary-Layer Meteorol. 30:31–55

    Article  Google Scholar 

  • Nieuwstadt F.T.M. (1984b). ‘The Turbulent Structure of the Stable, Nocturnal Boundary Layer’. J. Atmos. Sci. 41:2202–2216

    Article  Google Scholar 

  • Nieuwstadt F.T.M. (1985). ‘A Model for the Stationary, Stable Boundary Layer’. In: Hunt J.C.R (eds). Turbulence and Diffusion in Stable Environments. Clarendon Press, Oxford, U.K., pp. 149–179

    Google Scholar 

  • Ohya Y. (2001). ‘Wind-Tunnel Study of Atmospheric Stable Boundary Layers over a Rough Surface’. Boundary-Layer Meteorol. 98:57–82

    Article  Google Scholar 

  • Ohya Y., Neff D.E., and Meroney R.N. (1997). ‘Turbulence Structure in a Stratified Boundary Layer under Stable Conditions’. Boundary-Layer Meteorol. 83:139–161

    Article  Google Scholar 

  • Orszag S.A., and Pao Y.-H. (1974). ‘Numerical Computation of Turbulent Shear Flows’. Adv. Geophys. 18A:224–236

    Google Scholar 

  • Pahlow M., Parlange M.B., and Porté-Agel F. (2001). ‘On Monin–Obukhov Similarity in the Stable Atmospheric Boundary Layer’. Boundary-Layer Meteorol. 99:225–248

    Article  Google Scholar 

  • Piomelli U., and Liu J. (1995). ‘Large-Eddy Simulation of Rotating Channel Flows using a Localized Dynamic Model’. Phys. Fluids 7:839–848

    Article  Google Scholar 

  • Porté-Agel F., Meneveau C., and Parlange M.B. (2000). ‘A Scale-Dependent Dynamic Model for Large-Eddy Simulation: Application to a Neutral Atmospheric Boundary Layer’. J. Fluid Mech. 415:261–284

    Article  Google Scholar 

  • Porté-Agel F. (2004). ‘A Scale-Dependent Dynamic Model for Scalar Transport in LES of the Atmospheric Boundary Layer’. Boundary-Layer Meteorol. 112:81–105

    Article  Google Scholar 

  • Poulos G.S. and Coauthors (2002). ‘CASES-99: A Comprehensive Investigation of the Stable Nocturnal Boundary Layer’. Bull. Amer. Meteorol. Soc. 83:555–581

    Article  Google Scholar 

  • ReVelle D.O. (1993). ‘Chaos and “Bursting” in the Planetary Boundary Layer’. J. Appl. Meteorol. 32:1169–1180

    Article  Google Scholar 

  • Saiki E.M., Moeng C.-H., and Sullivan P.P. (2000). ‘Large-Eddy Simulation of the Stably Stratified Planetary Boundary Layer’. Boundary-Layer Meteorol. 95:1–30

    Article  Google Scholar 

  • Smedman A. (1988). ‘Observations of a Multi-Level Turbulence Structure in a Very Stable Atmospheric Boundary Layer’. Boundary-Layer Meteorol. 44:231–253

    Article  Google Scholar 

  • Sorbjan Z. (1989). Structure of Atmospheric Boundary Layer. Prentice-Hall, Englewood Cliffs, NJ, 317 pp

    Google Scholar 

  • Stoll R., and Porté-Agel F. (2006). ‘Effect of Roughness on Surface Boundary Conditions for Large-eddy Simulation’. Boundary-Layer Meteorol. 118:xx-xx

  • Stull R.B. (1988). An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht, The Netherlands, 670 pp

    Google Scholar 

  • van de Wiel B. (2002). ‘Intermittent Turbulence and Oscillations in the Stable Boundary Layer over Land’. PhD Thesis, Wageningen University, Netherlands, 129 pp

    Google Scholar 

  • Vickers D. and Mahrt L. (1997). ‘Quality Control and Flux Sampling Problems for Tower and Aircraft Data’. J.Atmos. Oceanic Tech. 14:512–526

    Article  Google Scholar 

  • Vickers D. and Mahrt L. (2003). ‘The Cospectral Gap and Turbulent Flux Calculations’. J.Atmos. Oceanic Tech. 20:660–672

    Article  Google Scholar 

  • Viterbo P., Beljaars A., Mahfouf J.-F., and Teixeira J. (1999). ‘The Representation of Soil Moisture Freezing and its Impact on the Stable Boundary Layer’. Quart. J. Roy. Meteorol. Soc. 125:2401–2426

    Article  Google Scholar 

  • Wyngaard J.C. (1973). ‘On Surface Layer Turbulence’. In: Haugen D.A (eds). Workshop on Micrometeorology. American Meteorological Society, Boston, pp. 109–149

    Google Scholar 

  • Zang Y., Street R.L., and Koseff J.R. (1993). ‘A Dynamic Mixed Subgrid-scale Model and its Application to Turbulent Recirculating Flows’. Phys. Fluids. A 5:3186–3196

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukanta Basu.

Additional information

A subscript ‘L’ on the turbulence quantities (e.g., u *L) will be used to specify evaluation using local turbulence quantities – otherwise, surface values are implied

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, S., Porté-agel, F., Foufoula-Georgiou, E. et al. Revisiting the Local Scaling Hypothesis in Stably Stratified Atmospheric Boundary-Layer Turbulence: an Integration of Field and Laboratory Measurements with Large-Eddy Simulations. Boundary-Layer Meteorol 119, 473–500 (2006). https://doi.org/10.1007/s10546-005-9036-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-005-9036-2

Keywords

Navigation